Value of Pre-procedural Multi-detector Computed Tomography Angiography in Prediction of Outcome in Retrograde Approach Recanalization For Coronary Chronic Total Occlusion

Thesis

Submitted for Partial Fulfillment of MD Degree OF Cardiology

Submitted By

Thanaa Maghraby Ogeal Awad

M.B.B.Ch, Msc Assuit University

Under Supervision Of

Prof. Dr. Ahmed Ahmed Khashaba

Professor of Cardiology Faculty of Medicine - Ain Shams University

Prof. Khaled Abdel Azeem Shokry

Professor of Cardiology Military Medical Academy

Dr. Yaser Gomaa

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Diaa El Din Ahmed Kamal

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University
Faculty of Medicine
Ain Shams University
2017

Acknowledgment

First and foremost, I thank Allah for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to **Prof. Ahmad Khashaba**, Professor of Cardiology, Ain Shams University, for his great support and stimulating views as a talented teacher $\mathcal L$ an excellent supervisor.

I would also like to express my sincere gratitude for **Prof. Khaled Abdel Azeem Shokry,** Professor of cardiology, Military
Medical Academy & head of cardiology department, Kobri Elkobba
military hospital, for his great support & help throughout this
work.

I must extend my warmest and deepest gratitude to **Prof. Yasser Gomaa**, Assistant professor of Cardiology, Ain Shams

University, for her great help. Her continuous encouragement was of great value and support to me.

Also, I cannot forget to send my gratefulness & deep thanks to **Dr. Diaa Eldin Kamal**, Lecturer of Cardiology, Ain Shams University, for his great help in order to reach the success of this work.

Really, I owe him too much.

Last but definitely not least, I would like to thank my family for always being there for me and for all the suffering and hardships I made them face from the day I entered this world. To them I owe my life.

سورة البقرة الآية: ٣٢

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	9
Review of Literature	
Multislice CT	10
Coronary CTO	54
CTO Recanalization Techniques	65
Patients and Methods	82
Results	95
Discussion	106
Conclusion	115
Recommendations	116
Limitations	117
Summary	118
References	120
Master Sheet	145
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Effective Radiation Dose Values for Co Diagnostic Imaging Procedures Background Radiation (mSV)	and
Table (2):	Angiographic Definitions of Colla Supplying Occluded Coronary Arterie	
Table (3):	Baseline characteristics of patients	96
Table (4):	CT angiography characteristics	97
Table (5):	PCI procedure characteristics.	105

List of Figures

Fig. I	No.	Title Page	No.
Fig. (1):	CT machine.	
Fig. (Components of a multidetector CT scanner	
Fig. (Retrospective gating.	
Fig. (Prospective gating.	
Fig. (a. Pixel b. voxel.	
Fig. (Image noise	
Fig. (7):	Dual source MDCT	22
Fig. (8	3):	Curved multiplanar reconstruction of the right coronary artery (RCA)	31
Fig. (9):	The MIP image of the right coronary artery (RCA).	32
Fig. (10):	VRT image.	
Fig. (11):	Examples of coronary artery calcium scans. Left: normal without CAC	
Fig. (12):	Representative Reconstructed Images of CTO Lesions	
Fig. (13):	Coronary Bypass Grafts.	
Fig. (Huge right coronary artery aneurysm seen	
8 · \		on axial view MIP coronary CT angiogram (A) and on invasive coronary angiogram	
		(B)	40
Fig. (15):	The pulmonary veins are exquisitely shown in this 3D surface rendered image of the heart	41
Fig. (16):	Multi-detector computed tomography angiography	
Fig. (17):	Sagittal maximum intensity projection	
Fig. (18):	Anomalous origin of the circumflex artery from the right sinus of Valsalva, with a	
Fig. (19):	retroaortic course (arrows)RCA arising from the left coronary sinus	44
_		and taking an interarterial course	45
Fig. (20):	Pericardial calcification.	45

List of Figures cont...

Fig. No.	Title Page	No.
Fig. (21):	Arch Dissection	46
Fig. (22):	Coronal and Sagittal Oblique	
8 \ /	Reconstruction of Aortic Root	47
Fig. (23):	CT angiogram shows a typical embolus in	
3	the left pulmonary artery	
Fig. (24):	Diagnostic catheterization results stratified	
3	by treatment strategy Christofferson et al	
Fig. (25):	The two mechanisms of CTO formation	
Fig. (26):	CTO plaque components	
Fig. (27):	Common available guidewires according to	
J	their stiffness measured by tip load.[110]	66
Fig. (28):	Structure of the wires	
Fig. (29):	Finecross GT microcatheter	67
Fig. (30):	Corsair Catheter	68
Fig. (31):	Parallel wire technique	71
Fig. (32):	Side branch technique	72
Fig. (33):	Favorable and Unfavorable Epicardial CCs	74
Fig. (34):	Knuckle-Wire Technique	76
Fig. (35):	Concept of CART	77
Fig. (36):	Reverse-CART Technique	
Fig. (37):	J-CTO score	86
Fig. (38):	Measuring the length of the occlusion	90
Fig. (39):	Artery of CTO segment	98
Fig. (40):	Degree of Ca. of CTO segment.	99
Fig. (41):	Calcium by CT.	
Fig. (42):	Proximal artery tortuosity.	

List of Abbreviations

Abb.	Full term
4.00	A · 11 C 1· 1
	American collage of cardiology
	American collage of cardiology foundation
	American collage of radiology
	Activated clotting time
	Atrial fibrillation
	American heart assocatation
	Anterior interventricular veiv
	American society of nuclear cardiology
	Appropiaitness use criteria
	Bare metal stent
	Coronary artery calcium
	Coronary artery bypass graft
	Coronary artery disease
<i>CART</i>	Controlled antegrade and retrograde subintimal
2 1 2 1	tracking
	Coronary collaterals
	Congenital heart disease
	Curved multiplanar reconstruction
	Cardiac resynchorization theraby
	Coronary sinus
<i>CSA</i>	Cross sectional area
	Computed tomography
	Computed tomography angiography
	\dots CT dose index
	Chronic total occlusions
<i>DES</i>	Drug Eluting Stent
<i>DLP</i>	Dose length product
<i>FOV</i>	Field of view
<i>GCV</i>	Great cardiac vein
<i>GW</i>	Guide wire
<i>HF</i>	Heart failure
hs CRP	High sensitivity c-reactive protein
<i>HU</i>	Hounsfield unit

List of Abbreviations cont...

Abb.	Full term
ICA	Invasve coronary angiography
	Instent re-stenosis
	Intravascular ultrasound
	Japanese chronic total occlusion
	Left atrial appendage
	Left anterior descending artery
	Left circumflex artery
	Left inferior pulmonary vein
	Left main coronary artery
	Left main trunk
	Left marginal vein
	Left ventricle
	Left ventricular ejection fraction
	Major adverse cardisvascular events
	Multidetector Computed Tomography
mGY	Milli Gray
<i>MIP</i>	Maximum intensity projection
<i>MPR</i>	Multiplanar reconstruction
<i>MRCP</i>	Maximum recommended contrast dose
<i>MRI</i>	Magnetic resonance imaging
<i>mSv</i>	Milli Sieverts
<i>NPV</i>	Negative predictive value
<i>OM</i>	Obtuse marginal branch
<i>OTW</i>	Over the wire
<i>PCI</i>	Percutaneus coronary intervention
<i>PE</i>	Pulmonary embolism
<i>PET</i>	Peisetron emission tomography
<i>PIV</i>	Posterior interventricular vein
PVI	Pulmonary vein isolation
<i>RCA</i>	Right coronary artery
	Right superior pulmonary vein
	Seattle angina questionnaire
SCCT	Society of cardiovascular computed tomography

List of Abbreviations cont...

Abb.	Full term
STAR TAVI TEE TIMI	Single photon emission computed tomography Subintimal tracking and re-entry technique Transcatheter Aortic valve implantation Transoesophageal echocardiography Thrombolysis in myocardial infarction Trans thoracic echocardiography United states
<i>VRT</i>	Volume rendering technique

Introduction

Phronic total occlusion (CTO) recanalization still represents the final frontier in percutaneous coronary intervention (PCI)

Jeroudi et al. (2013) reviewed 1699 consecutive patients who underwent coronary angiography at a Veterans Affairs hospital and reported that the prevalence of CTO among coronary artery disease (CAD) patients with and without prior coronary artery bypass graft (CABG) surgery was 89% and 31%, respectively^[1] higher than reported in a recent large Canadian registry (54% and 18.4%, respectively),^[2] but similar to other prior studies ^[3,4].

Successful recanalization of CTO lesions in patients with viable myocardium not only facilitates the reduction of angina symptoms, avoid bypass surgery and decrease incidence of myocardial infarction, but also may improve long –term survival ^[5,6]. An analysis of 25 years of experience in the Mayo Clinic showed that the procedural success rate for CTO remained around 70%^[7].

Multi-detector computed tomography (MDCT) can visualize the coronary artery lumen, artery wall, and atherosclerotic plaque; even the lipid pool can be visualized, which is fibrous, calcified, and heavily laden with cholesterol ^[8,9].

CT coronary angiography is a useful tool to optimize PCI strategy as it is possible to characterize the length, course, and

composition of an occluded artery and allow visualization of the distal runoff and side branches^[10].

Retrograde approach has been described initially via the bypass grafts [11], and more recently the use of septal collaterals has been described to be safe and effective^[12]. Retrograde approach for recanalization of CTO has gained popularity recently with improved success rates as shown in several case reports and small series of selected patients^[13].

AIM OF THE WORK

The goal of this study is to evaluate the imaging results from Multi-detector Computed Tomography angiography (MDCT) in chronic coronary total occlusion(CTO) before retro grade Approach In percutaneaous coronary intervention(PCI).

<u>Chapter One</u>

Multislice CT

Historical overview

-ray computed tomography (CT) has proven to be a major advance in the field of medicine.

Single detector CT scanners were first utilized in the early 1970's.

The images produced were acquired in the axial plane as individual slices 8-13 mm in thickness.

The scanner gantry (x-ray tube) had a single detector which translated around the patient as the patient table moved in the cephalocaudal (z-axis) direction fig (1).

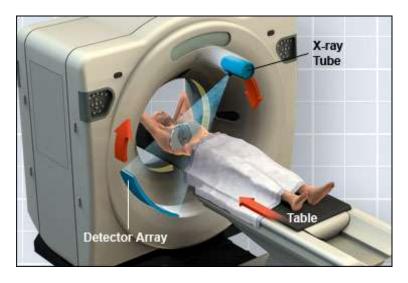


Fig. (1): CT machine.

As early as 1975 there are descriptions of reconstruction techniques using axial CT data to construct coronal and sagittal image planes ^[14].

In 1979, garnering the Nobel Prize in medicine for Sir Godfrey Newbold Hounsfield and Allan McLeod Cormack.

Since then, numerous advances have been made with the introduction of high quality scanners and new imaging protocols to enhance the quality of the images and reduce the amount of radiation.

Second and third generation CT scanners were improved by increasing the number of detectors and by converting the translation motion of the radiation source to rotation, respectively, resulting in Rapidly increases in imaging speed with improved image quality.

Standard two dimensional (2D) images now are beyond axial, sagittal and coronal planes to include off axis and curved planar images.

Three dimensional (3D) volume rendered images are now commonly displayed in motion, adding a fourth dimension (4D) [15].

Multidetector computed tomography (MDCT):

In the 1980s 4 channel MDCT appeared in commercial use.

Since that era, the addition of more imaging channels, rows or detectors has increased exponentially.