

DEPOLUTION OF INDUSTERIAL WASTE WATER BY OXIDATION IN AQUEOUS SOLUTION USING SUPPORTED METAL COMPLEXES

Submitted By

RADWA MOHAMED WAGDY ABD ALLAH

B.Sc., (Chemistry), Faculty of science, Ain Shams University, 1999 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for Master Degree
In
Environmental Sciences

Department of Environmental Basic Science Institute of Environmental Studies and Research Ain Shams University

DEPOLUTION OF INDUSTERIAL WASTE WATER BY OXIDATION IN AQUEOUS SOLUTION USING SUPPORTED METAL COMPLEXES

Submitted By

RADWA MOHAMED WAGDY ABD ALLAH

B.Sc., (Chemistry), Faculty of science, Ain Shams University, 1999 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for Master Degree
In
Environmental Sciences

APROVED BY SUPERVISORS

Prof. Dr. Salah A. Hassan

Professor of Physical Chemistry Faculty of Science Ain Shams University

Dr. Hamdy A.H. Sokkar

Ass. Professor of Physical Chemistry- Faculty of Science Ain Shams University

APPROVAL SHEET

DEPOLUTION OF INDUSTRIAL WASTE WATER BY OXIDATION IN AQUEOUS SOLUTION USING SUPPORTED METAL COMPLEXES

Submitted By

RADWA MOHAMED WAGDY ABD ALLAH

B.Sc., (Chemistry), Faculty of science, Ain Shams University, 1999 Diploma in Environmental Sciences, Institute of Environmental Studis & Research, Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for Master Degree
In
Environmental Sciences

APROVED BY THE COMMITTEE:

Prof. Dr. Salah A. Hassan

Professor of Physical Chemistry Faculty of Science, Ain Shams University

Prof. Dr. Mohamed M. Selim

Professor of Physical Chemistry
Department of Physical, Chemistry Laboratory of Surface
Chemistry and Catalysis, National Research Center

Prof. Dr. Nadia A. Yousef

Professor of physical Chemistry College of Girl Ain Shams University

ACKNOWLEDGEMNT

Foremost, I would like to express my deep and sincere gratitude to *Prof. SALAH A. HASSAN*. Professor of Physical chemistry, Faculty of Science, Ain Shams University, for suggesting the subject of this study, useful guidance, continuous supervision and his great help in the interpretation of the results.

Also, deep sense of gratitude is to Dr. Hamdy A. H. Sokkar for his careful supervision, valuable suggestions and continuous support.

Moreover, deep thanks and gratitude are also due to Dr. Radwa Abbas EL-Salamony Egyptian Petroleum Research Institute (EPRI) for the appreciated help in performing numerous measurements and valuable discussion of some application results.

I highly acknowledge the friendly atmosphere offered by my Basic Science Department at Institute of Environmental Studies and Research.

<u>RADWA M. WAJDY</u>

Dedication

I would like to dedicate my thesis

 $\mathcal{J}_{\mathbf{c}}$

My beloved late Father and

My beloved admirable Mother

Also deep gratitude to my sister and my brother for their real support that pushed me up to achieve this work

RADWA M. WAJDY

ABSTRACT

In the present study, new composites based on local rice straw ash (RSA) were synthesized. The RSA was supplied by controlled burning of rice straw at 600° C for 4 h. The synthesized composites, by incorporating titania (TiO₂, 10 – 50 wt %), copper phthalocyanine complex (CuPc, 1.0 wt %) or TiO₂ – CuPc combination, beside the pristine RSA, were pressed at (2000 psi) into disc-shaped forms. In this process, recycled polymer foam (Ps F-2000/ chloroform) was used as binder. For comparative purposes, composites of RSA-TiO₂ were also studied in powder form. Physicochemical characterization of various composites was performed adopting the XRD, N₂-physisorption, FTIR, EDX, TEM, and SEM techniques. The as-synthesized composites were successfully applied for removal of hazardous textile dyes (represented in this study by methylene blue, MB) as well as some heavy metal ions (represented by Cd, Pb and Cu), causing environmental pollution and toxic problems in industrial waste water. Different kinetic variables of the dye or the heavy metal ions removal in aqueous solutions were investigated, e.g., order, model and mechanism of reaction, effect of initial concentrations, pH, temperature, stability and reusability of the used composite.

LIST OF TABLE	I
LIST OF FIGURE	II
* AIM OF WORK	VI
* PLAN OF WORK	VII
CHAPTER I: INTRODUCTION	
1.1. General concept	1
1.2. Nature of Municipal waste -Water	2
1.3. Wastewater treatment	6
1.4. Chemical unit processes	8
(A) Chemical precipitation	8
(B) Disinfection	10
(B) Dechlorination	11
1.5. Wastewater treatment from organic substances	11
1.6. Dye pollution	12
1.7. Heavy metals Pollution	17
1.7.1. Heavy metal removal	20
1.7.2. Adsorption	24
1.7.2.1. Low cost adsorbents Definition	25
1.7.2.2. Adsorption process	25
1.7.3. Literature survey of some examples for heavy metal removal	25
1.7.3.1. Removal of Chromium	25
1.7.3.2. Removal of Copper	27
1.7.3.3. Removal of lead	30
1.8. Remarks on Some materials used	34
(a) Rice straw ash	34
(b) Titanium dioxide and photocatalysis	36
CHAPTER II: EXPREMENTAL	
2.1 Materials	39

2.2. Preparation of rice straw ash (RSA)	.0
2.3. Preparation of titania (TiO ₂) nano particles	.0
2.4. Preparation of RSA-based photocatalytic composite discs	0
2.5. Photocatalytic activity measurements in removal of dyes	1
2.6. Preparation of methylene blue solution	.3
2.7.Determination of metal ion concentration in solution by (Atomic Absorption Spectroscopy AAS)	
2.8. Catalysts Characterization	4
2.8.1.X- ray diffraction (XRD)	4
2.8.2.N ₂ –physisorption	4
2.8.3. High resolution transmission electron microscopy (HRTEM) 4	5
2.8.4.Scanning electron microscope (SEM)	5
2.8.5.Fourier transform infrared (FTIR)	5
2.9.Kinetic analysis of removal data of dyes or heavy metal ions is aqueous solution	
CHAPTER III: RESULTS & DISCUSSIONS	
3.1. Catalytic material	7
3.2. Physicochemical Characterization	.7
3.2.1. XRD analyses	7
3.2.2. Surface characteristics	2
2.2.2 FITTI	
3.2.3. FTIR spectroscopy	:3
3.2.3. FTIR spectroscopy	
	69 of
3.2.4. Morphology from TEM and EDX	69 of 73
3.2.4. Morphology from TEM and EDX	of '3 '3
3.2.4. Morphology from TEM and EDX	of '3 '3 sc
3.2.4. Morphology from TEM and EDX	of '3 '3 'sc '5
3.2.4. Morphology from TEM and EDX	of '3 '3 '3 '5 '5 '8

(E) Langmuir- Hinshelwood kinetic study
(F) Dye degradation from absorption spectra
(G) Recycling studies
3.4.Application of RSA-based composites discs in removal of some heavy metals
3.4.1. General remarks
3.4.2.Removal of Cd ⁺² ions by adsorption using RSA composites discs
(A) Adsorption efficiency of the used RSA-based composites
(B) Kinetic treatment of adsorption process
(C) Intra-particle diffusion model
(D) Elovitch model
3.4.3. Removal of Pb ⁺² ions by adsorption using RSA composite discs 100
(A) Effect of initial concentration Pb ⁺² ions
(B) Kinetic analysis of adsorption data
(C) Intra-particle diffusion model
(D) Elovitch model
(E)Effect of temperature on Pb ²⁺ ions adsorption using different initial concentrations
3.4.4.Adsorption of Cu ⁺² ions using RSA –polymer binder composite disc
(A)Effect of initial concentration Cu ⁺² ions and temperature of adsorption
(B) Effect of pH. 107
CHAPTER IV: Summary and Conclusions
REFERENCES

<u>TABLE 1</u> : Typical composition of untreated domestic waste-water 4
TABLE 2: Imortant contaminants in waste-water
TABLE 3: Waste-water treatment unit operation and processes
TABLE 4: Maximum acceptable metal concentration in drinking water according to the USEPA
TABLE 5: Mineral content (wt %) in RSA
TABLE 6: Textural and structural properties of original RSA, RSA-binder, TiO2, RSA-TiO2 (50%), RSA-CuPc and RSA-TiO2-CuPc composites
<u>TABLE 7</u> : Analysis data derived from EDX analysis of RSA
TABLE 8: Analysis data derived from EDX analysis of RSA-TiO ₂ 70
TABLE 9: Adsorption kinetic parameters of MB dye over the studied composites discs
TABLE 10: Derived kinetic data of Cd ²⁺ ions removal according to pseudo- first order, pseudo-second order, intra-particle diffusion and Elovich models
TABLE 11: Derived kinetic data of Pb ²⁺ ions removal according to pseudo-first order, pseudo-second order, intra-particle diffusion and Elovich models

Fig.1: Crystal structures of tatiania (a) anatase, (b) rutile, (c) brookite 36
Fig.2: Structure of Methylene Blue [www.wikipedia.org]
Fig.3:Photographs of Rice Straw (RS), Rice Straw Ash (RSA), Rice Straw Ash/recycled polymer foam (P.F2000) (RSA-P.F.), RSA-TiO2, RSA-CuPc and RSA -TiO2-CuPc composite disc
Fig.4: Schematic diagram of photo-reactor and composite disc
Fig.5: XRD patterns of (a) RSA, RSA-binder and RSA-CuPc (b) TiO2, RSA-TiO2 and RSA-TiO2-CuPc composite, (c)TiO2, RSA-TiO2(10), RSA-TiO2(10), RSA-TiO2(10), RSA-TiO2(10)
Fig.6: N ₂ adsorption-desorption isotherm for (a) RSA
Fig.7: PSD curves for (a) RSA and (b) TiO ₂
Fig.8: FTIR Spectra of (a) Pristine RSA and (b) pure TiO ₂
Fig.9: EDX data for RSA
Fig. 10:EDX data for RSA-TiO ₂ 70
Fig.11:Joined TEM (from EDX) images of (a) RSA, (b) Nano TiO ₂ and (c) RSA-TiO ₂ Composite
Fig.12: TEM image of RSA-TiO ₂ (50) composite
Fig.13:Photocatalytic degradation of MB dye using the pristine RSA, pure TiO ₂ and different RSA-TiO ₂ (10-50wt%) powder catalysts
Fig.14:Apparent first-order kinetic data for the RSA-TiO ₂ photocatalysts
Fig.15:Photocatalytic degradation of MB dye using the RSA, TiO ₂ , RSA-TiO ₂ (50), RSA-CuPc and RSA-TiO ₂ -CuPc in disc form
Fig.16:kinetic results of MB adsorption over RSA, RSA-TiO ₂ , RSA-CuPc and RSA-TiO ₂ - CuPc composites according to: (a) Pseudo first-order kinetic model and (b) Pseudo second-order kinetic model

Fig.17: Pseudo first order kinetic plots and rate constants (k) of photo degradation of 25 ppm of MB on RSA-TiO ₂ , RSA-CuPc and RSA-TiO ₂ -CuPc discs under visible light, pH= 5.8581
Fig. 18:Photo-degradation mechanism of MB by visible light in presence of pure TiO ₂ (a), CuPc sensitization (b) and sensitized TiO ₂ by CuPc
Fig.19:Effect of initial dye concentration on MB removal on (a RSA and (b) RSA-TiO ₂ (50) composite discs under visibl light, pH= 5.85.
Fig.20:linear correlation of $1/r_0$ versus $1/C_0$ using RSA and RSA
TiO ₂
Fig.21:Spectral profiles obtained for MB dye on (a) RSA, (b) RSA-CuPc (c) RSA-TiO ₂ and (d) RSA-TiO ₂ -CuPc composite discs as function of time of irradiation with visible light. The irradiation times were (top to bottom): 1, 5, 14, and 21h respectively
Fig.22:Reproducibility of the RSA, RSA-TiO ₂ , RSA-CuPc and RSA TiO ₂ -CuPc composite discs for 25 ppm of MB under visible light pH= 5.85 and irradiation time of 120 min (a) Disc and (b Powder
Fig.23:Removal % of Cd^{+2} ions using the RSA, RSA-CuPc, RSA-TiO and RSA-TiO ₂ -CuPc catalysts at the reaction conditions (C_o = 500 ppm, T = 25 °C, pH= neutral)95
Fig.24:Pseudo-first order kinetic of removal of Cd^{+2} ions using th RSA, RSA-CuPc, RSA-TiO ₂ and RSA-TiO ₂ -CuPc catalyst at the reaction conditions:($C_0 = 500$ ppm, $T = 25$ °C, pH neutral)
Fig.25:Pseudo-second order kinetic of removal of Cd^{+2} ions using the RSA, RSA-CuPc, RSA-TiO ₂ and RSA-TiO ₂ -CuPc catalysts at the reaction conditions: $(C_o = 500 \text{ ppm}, T = 25^{\circ}\text{C}, \text{pH}=\text{neutral})$
Fig.26:Intra-particle diffusion model of removal % of Cd^{+2} ions using th RSA, RSA-CuPc, RSA-TiO ₂ and RSA-TiO ₂ -CuPc catalysts at th reaction conditions: ($C_o = 500$ ppm, $T = 25$ °C, pH= neutral) 99
Fig.27:Elovich model of removal of Cd^{+2} ions using the RSA, RSA-CuPo RSA-TiO ₂ and RSA-TiO ₂ -CuPo catalysts at the reaction condition ($C_0 = 500$ ppm, $T = 25$ °C, pH= neutral)

Fig.28:Removal % of Pb^{+2} ions using the RSA disc, at the reaction conditions: ($C_o = 100, 200, 250 \text{ ppm}, T = 25^{\circ}\text{C}, \text{pH} = \text{neutral}$) 101
Fig.29:Pseudo-first order kinetic of removal of Pb^{+2} ions using the RSA disc, at the reaction conditions: ($C_o = 100, 200, 250 \text{ ppm}, T = 25 ^{\circ}C$, pH= neutral)
Fig.30:Pseudo-second order kinetic of removal of Pb^{+2} ions using the RSA disc, at the reaction conditions: ($C_o = 100, 200, 250 \text{ ppm}, T = 25 ^{\circ}\text{C}, \text{pH}=\text{neutral}$)
Fig.31: Intra-particle diffusion model of removal of Pb^{+2} ions using the RSA disc, at the reaction conditions: ($C_o = 100, 200, 250 \text{ ppm}$, $T = 25 ^{\circ}\text{C}$, $pH = \text{neutral}$)
Fig.32:Elovich equation of removal of Pb^{+2} ions using the RSA disc, at the reaction conditions:($C_o = 100, 200, 250$ ppm, $T = 25$ °C, pH=neutral)
Fig.33:Effect of temperature on removal of Pb^{+2} ions using the RSA disc, at the reaction conditions: ($C_o = 100, 150,200, 250 \text{ ppm}, T = 20 - 50 ^{\circ}\text{C}, \text{pH}= \text{neutral}$)
Fig.34:Removal % of Cu^{+2} ions using the RSA powder, at the reaction conditions: ($C_o = 100, 200, 300, 400 \text{ ppm}, T = 20 - 60 ^{\circ}\text{C}, pH = neutral}$)
Fig.35:Effect of PH on removal of Cu^{+2} ions using the RSA powder, at the reaction conditions: ($C_o = 200, 400$ ppm, $T = 25$ °C, pH= 1.8-7)