Biological activity of some Egyptian Medicinal Plants

Chesis

Submitted for the Degree of PhD of Science (Microbiology)

By

Al-Shimaa Saber Mohamed Abd-Elmegeed

M.Sc. Cairo University 2011 (Botany and Microbiology Department)

Under Supervision of

Prof. Dr/Hala Mohamed Abu-shady

Professor of Medical Bacteriology

Microbiology Department- Faculty of Science

Ain Shams University

Dr/ Einas Hamed El-Shatoury

Assistant Professor of Microbiology

Microbiology Department- Faculty of Science

Ain Shams University

Faculty of Science Microbiology Department Ain-Shams University

2017

Approval Sheet

For

Submission of Thesis entitled

Biological activity of some Egyptian Medicinal Plants

By

Al-Shimaa Saber Mohamed Abd-Elmegeed M.Sc. Cairo University 2011

(Botany and Microbiology Department)

Supervision	committee
1. Prof. Dr.	•••••
Faculty of	of Science- Ain-Shams University
2. <i>Dr</i> .	•••••••••••
Faculty o	of Science- Ain-Shams University

Head of Microbiology Department

Prof. Dr.

سورة البقرة الآية: ٣٢

At first, I would like to thank ATTAN that allowing me to achieve this work, without his bless, any great effort is invaluable.

This thesis would not have been completed without the help of several people whom I wish to thank. I would like to express my great appreciation to Prof. Dr. Hala Abu-Shady, Department of Microbiology, Ain Shams University for supervision, revising the text, valuable discussion and support. She was always there when I need any advice or to solve any problem. I would also like to give my special thanks and appreciation to Dr. Einas H. El-shatoury in the same department for sharing in supervision, keen interest, and valuable advices

Declaration

This dissertation has not previously been submitted for a degree at this or at any other university and is the original work of the writer.

Al-Shimaa, S. M. Abd-Elmegeed

Dedication

For my parents whom have been the wind beneath my wings until I completed this work

For my kids Salma, Hanin, Anas & Karma

I would like to express my sense of gratitude and thanks to my loving husband, Ahmed, for his continuous support and understanding. Without him, the finalization of this work would not have been done.

List of Contents

Title Page No.	
List of Contents	
List of Abbreviations	
List of TablesVI	
List of FiguresVII	
AbstractIX	
Chapter (4): Introduction and Literature Review	
Introduction and Aim of the Work1	
Literature Review5	
1. Medicinal Plants – An Overview5	
2.Traditional Use of Medicinal Plants6	
3.Ancient Systems of Medicine8	
3.1. Traditional Indian Medicine8	
3.2. Traditional Chinese Medicine9	
3.3. Traditional Arabic Medicine10	
3.4. African, European and Other Traditional Systems of Medicine11	
3.5. Traditional Egyptian Medicine12	
4. Medicinal plants and bacterial diseases13	
4.1.Infectious diseases13	
4.2. Chemo-therapy of Infectious diseases15	
4.3. Multi-drug resistances15	
5. Natural antibiotic properties of plants and phyto-chemicals 17	
6. Bioactive Molecules of Medicinal Plants19	
6.1. Phenolics and Polyphenols19	
6. 1. 1. Simple phenols and phenolic acids20	
6. 1. 2. Quinones21	
6. 1. 3. Flavones, flavonoids, and flavonols22	
6. 1. 4. Tannins	
6. 1. 5. Coumarins	
6. 2. Terpenoids and Essential Oils	
6. 3. Alkaloids	
6. 4. Lectins and Polypeptides	
6. 5. Other Compounds 29	
7. Medicinal Plants and Anti-oxidant Properties30	
8. Medicinal Plants and Anti-tumor Activity	
Chapter (77): Materials And Methods	
1. Plant Samples 39	
1. 1. Tested Plants	
1. 2. Preparation of Plant Extracts	
1. 2. 1. Aqueous extraction	

1. 2. 2. Organic extraction	42
2. Anti-bacterial activity.	
2. 1. Micro-organisms	
2. 2. Preparation of Inoculum	
2. 3. Disc Diffusion Assay for Determination of Anti-bacterial Activity of Plant	
Extracts (Lai et al., 2010; Senthil-Rajan et al., 2013)	45
2. 4. Determination of Minimum Inhibitory Concentration (MIC) and Minimum	
Bactericidal Concentration (MBC). (Mahboubeh et al., 2010)	48
3. Phyto-chemical Analysis	49
Qualitative Analysis of Active Phyto-chemicals.	49
3. 1. Flavonoids	50
3. 2. Alkaloids	50
3. 3. Glycosids (Keller-kiliani Test)	50
3. 4. Terpenes	50
3. 5. Phenolics	50
3. 6. Carbohydrates (Molisch's test)	50
3. 7. Proteins	
3. 8. Saponins (Frothing Test)	
3. 9. Tannins	
4. Anti-oxidant activity (Mensor et al., 2001)	
5. Potential Anti-tumor Assay.	
5. 1. Cell Culture.	
5. 2. Preparation of Stock Solution	
5. 3. SRB "Sulfo-Rhodamine B Colorimetric Assay" (Vichai and Kirtikara, 2006)	53
6. High Performance Liquid Chromatography (HPLC) Analysis of Phenolic	
Compounds in Ethanolic Extract	
6. 1. Sample Preparation and Standard Compounds.	
6. 2. HPLC System.	
6. 3. Chromatographic Conditions	
6. 4. HPLC Analysis and Identification of Compounds	
7. Screening of Anti-bacterial and Anti-tumor Activity of Some Selected Pheno	
Compounds	
8. Reagents and Mediaa- PBS (Phosphate buffered saline) Buffer	
b- Tris-EDTA Buffer.	
c- Wagner's Reagentsd- M-H Broth Medium	
e- Nutrient Agar Medium.	
-	
9. Statistical Analysis	
Experiment (1) Plant Samples	
Experiment (2) Anti-bacterial activity.	
Experiment (2) And-bacterial activity.	02

a- Disc Diffusion Assay for Determination of Anti-bacterial Activity of	Plant
Extracts	62
b- Determination of Minimum Inhibitory Concentration (MIC) and M	inimum
Bactericidal Concentration (MBC)	90
Experiment (3) Phytochemical Analysis	99
Qualitative Analysis of Active Phyto-chemicals	99
Experiment (4): Anti-oxidant Activity	103
Experiment (5): Potential Anti-tumor Assay	107
Experiment (6): High Performance Liquid Chromatography (HPLC) Analysis	of
Phenolic Compounds in Ethanolic Extract	110
Experiment (7): Screening of Anti-bacterial and Anti-tumor Activity of Some	9
Selected Phenolic Compounds	119
1- Anti-bacterial Activity	119
a- Disc diffusion assay for determination of anti-bacterial activity	119
b- Determination of Minimum Inhibitory Concentration (MIC) and M	inimum
Bactericidal Concentration (MBC)	
2- Potential Anti-tumor assay	127
Chapter (IV): Discussion	
Summary	147
Conclusion and Recommendation	151
References	152
اللخص العربي	1

List of Abbreviations

LIST OF ANNI CAIGNAIN				
Abb.		Full Term		
°C	:	Degree Celsius.		
4T1	:	breast cancer cells		
A549 cell line	:	Human lung carcinoma cell line		
\mathbf{AD}	:	Anno Domini		
AP	: Animals bites and poisons			
ATCC : American Type Culture Collection				
B. subtilis	: Bacillus subtilis			
BCE	:	: Before Common Era		
ВНА	:	Butylated hydroxyanisole.		
ВНТ	:	Butylated hydroxytoluene.		
CACO	:	Large intestinal carcinoma cell line		
CAE	:	Crude acetone extract.		
CAQE	:	Crude aqueous extract.		
CE	:	Common Era		
CEE	:	Crude ethanolic extract.		
Cfu	: Coliform units			
DMSO	: Dimethyl sulfoxide.			
DPPH	H : Diphenyl picryl hydrazyl			
\mathbf{DW}	:	: Disteled water		
E. coli	:	Escherichia coli		
E. faecalis	:	Enterococcus faecalis		
ESβL, E. coli	:	Extended Spectrun β Lactamase producing <i>E. coli</i>		
ESβL, <i>K. pneumoniae</i>	:	Extended Spectrun β Lactamase producing <i>K. pneumoniae</i>		
EY	:	Eye diseases.		
FBS	:	Fetal bovine serum.		
gm DW	:	Gram dry weight		
H. pylori	: Helicobacter pylori			
HL-60 cell line	:	Human promyelocytic leukemia cell line		
HPLC	:	: High performance liquid chromatography.		
HS	:	: Hemorrhoids and sexual diseases.		
IC_{50}	:	: The half maximal inhibitory concentration		
ID	:	: Internal diseases.		
IH	:	Inflammations and heat.		
K. pneumonia	:	Klebsiella pneumonia		
LD ₅₀	:	: Median lethal dose		
LIM1863 cell line	:	Human colorectal carcinoma cell line		

MBC: Minimum Bactericidal Concentration.

MCF-7 cell line : Breast cancer cell line MDR : Multi-drug resistant.

MDR, S. pyogenes
M-H Broth
MIC
Multi-drug resistant S. pyogenes
Muller-Hinton broth medium.
Minimum Inhibitory Concentration

MIC : Minimum Inhibitory Concentration.

mM : Millimolar

MRSA : Methicillin-resistant *S. aureus*.

MβL, P. aeruginosa : Metallo-beta-lactamase producing P. aeruginosa

NCI : National Cancer Institute.

NCTC : National Collection of Type Cultures

P. aeruginosa : Pseudomonas aeruginosa

P. vulgaris : Proteus vulgaris

PA : Pains.

PBS : Phosphate buffered saline.PE : Psychiatric and epilepsy.

OS : Quorum-sensing.

ROS : Reactive oxygen species.

RPMI 1640 : Roswell Park Memorial Institute

Rt : Retention time.

S. aureus
S. epidermis
S. pyogenes
Staphylococcus aureus
Staphylococcus epidermidis
Streptococcus pyogenes

S. typhiS.F.Survival fractionSDSkin diseases.

SI : Stomach and intestine.

SRB : Sulfo-Rhodamine B colorimetric assay.

TCM: Traditional Chinese medicine.

TE: Teeth.

TE buffer : Tris EDTA buffer

TSM : Traditional systems of medicine.

VWD detector : Variable Wavelength Detector

WB : Wounds and burns.

WHO : World Health Organization.

μM : Micromolar

List of Tables

Table No.	Title	Page No.
Table (1):Selected medicinal	plants for screening their bio	ological
activities		40
Table (2):Selected medicinal pla	nts and its' tradisional uses	41
Table (3): Panel of tested organis	sms for in vitro anti-bacterial scr	eening46
Table (4): The antibiotic discs us	sed for sensitivity test	48
Table (5): Selected medicinal pla	•	
Table (6): The anti-bacterial a	ctivities (diameter of inhibition	n zone,
mm) of three differen	t extracts of the tested plants	against
	l	
Table (7): The anti-bacterial a		
	t extracts of the tested plants	•
· · ·) bacteria	
Table (8): Minimum Inhibitory		
	ation (MBC) (mg/mL) of tester	-
C	d tested organisms	
Table (9):Minimum Inhibitory		
	ation (MBC) (mg/mL) of tester	-
_	isolated (MDR) bacteria	
Table (10): Qualitative analy		
	tested plants	
Table (11):DPPH free radical se	• • •	
	plants	
Table (12):Potential cytotoxicit		
	nt conc. using CACO cell line	
Table (13): The concentrations	· •	_
ŕ	longa and Origanum marjorana	•
Table (14): Anti-bacterial activi		
	2.50	
Table (15): Minimum Inhibitor	` ′	
	ration (MBC) (mg/mL) of s	
-	nt bacterial strains.	
Table (16): Potential anti-tumor	•	
conc. using CACO cell	line	128

List of Figures

Figure No. Title Pag	e No.
Figure (1): Selected medicinal plants and its percentage extraction yield	61
Figure (2): Anti-microbial assay of different plant extracts and standed	erd
antibiotics against Pseudomonas aeruginosa (NCTC 10662)	73
Figure (3): Anti-microbial assay of different plant extracts and standed	erd
antibiotics against Klebsiella pneumonia (ATCC 10031)	74
Figure (4): Anti-microbial assay of different plant extracts and standed	erd
antibiotics against Escherichia coli (ATCC 25922)	75
Figure (5): Anti-microbial assay of different plant extracts and standed	erd
antibiotics against Staphylococcus aureus (ATCC 25923)	76
Figure (6): Anti-microbial assay of different plant extracts and standed	erd
antibiotics against Streptococcus pyogenes (ATCC 12344)	77
Figure (7): Anti-microbial assay of different plant extracts and standed	erd
antibiotics against MβL, Pseudomonas aeruginosa	85
Figure (8): Anti-microbial assay of different plant extracts and standed	erd
antibiotics against ESβL, Klebsiella pneumonia	
Figure (9): Anti-microbial assay of different plant extracts and standed	
antibiotics against ESβL, Escherichia coli	87
Figure (10): Anti-microbial assay of different plant extracts and standed	erd
antibiotics against MRSA.	88
Figure (11): Anti-microbial assay of different plant extracts and standed	erd
antibiotics against MDR Streptococcus pyogenes.	
Figure (12): DPPH free radical scavenging activity (% Inhibition) of different	ent
extracts of tested medicinal plants.	106
Figure (13): Potential anti-tumor assay of some medicinal plant extracts	at
different conc. using CACO cell line	109
Figure (14): Retention times of phenolic peaks in Curcuma longa	
Figure (15): HPLC profile of phenolics in Curcuma longa	
Figure (16): Retention times of phenolic peaks in Origanum marjorana	
Figure (17): HPLC profile of phenolics in Origanum marjorana	
Figure (18): Total amount of identified phenolic compounds (mg/100gm D	
within Curcuma longa and Origanum marjorana	
Figure (19): Anti-microbial assay of benzoic acid, salicylic acid and ru	tin
against selected bacteria	
Figure (20): Minimum Inhibitory Concentration (MIC) (mg/mL) of select	
phenols against different bacterial strains.	
Figure (21): Potential anti-tumor assay of selected phenols at different co	
using CACO cell line.	128

List of Photos

Photo	o No. Title	Page No.
Photo	(1): Extraction of tested medicinal plan	nts43
Photo	(2): Extraction yields of selected medi	cinal plants43
Photo	(3): Anti-bacterial activity of acetone plants against P. aeruginosa	
Photo	(4): Anti-bacterial activity of ethanol plants against P. aeruginosa	
Photo	(5): Anti-bacterial activity of hot wa some selected plants against S. aure	
Photo	(6): Anti-bacterial activity of acetone plants against S. aureus.	
Photo	(7): Anti-bacterial activity of ethanol plants against S. aureus	
Photo	(8): Anti-bacterial activity of ethanol plants against K. pneumonia	
Photo	(9): Anti-bacterial activity of ethanol plants against E. coli	
Photo	(10): Anti-bacterial activity of ethan some selected plants against E. coli.	
Photo	(11): Anti-bacterial activity of hot was some selected plants against S. pyo	
Photo	(12): Anti-bacterial activity of ehanol plants against S. pyogenes	

Abstract

Medicinal plants have been used as a source of therapies since ancient times in Egypt. The present study was designed to investigate the antibacterial, anti-oxidant and anti-tumor activities of aqueous and organic extracts from twenty selected medicinal plants, cultivated in Egypt then evaluate the anti-bacterial and anti-tumor activity of the most abundant identified phenolic compounds present in the best two plants using HPLC. The disk diffusion method and micro-broth dilution were used to determine MIC and MBC of the samples against 10 bacterial strains belonging to five species, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes. While phytochemical screening assay followed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay were used to assess the anti-oxidant of the extracts, the large intestinal carcinoma (CACO) cell line was used to evaluate the anti-tumor of these extracts by Sulfo-Rhodamine B colorimetric (SRB) assay. The results indicated that all studied crude extracts were able to inhibit the growth of at least three of the tested bacteria. All studied plants have, qualitatively, various bioactive components and were observed to be high to moderate antioxidant agents. Moreover, IC₅₀ values below 20 µg/mL were recorded for the crude extract of Origanum marjorana, Olea Europaea and Curcuma longa in anti-tumor assay. Rutin, benzoic acid and salicylic acid were the most abundant phenolic compounds by HPLC in Curcuma longa and Origanum marjorana. Rutin and benzoic acid showed anti-bacterial activity against 100% and 80% of tested bacteria, respectively and expressed moderate cytotoxic activity with IC₅₀ 22.7 and 47.8 µg/mL, respectively. Finally, the results of the present investigation provided supportive data for the possible use of the plant extracts investigated here in treatment of various diseases.

Keywords: Anti-bacterial, Anti-oxidant, Anti-tumor, HPLC, Medicinal plants, Phytochemicals.