

Design and Modeling of Diesel Engine Spark Arrestor with Experimental Verifications

By

Eng. Mohamed Mostafa Mohamed Farid Ammar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

DESIGN AND MODELING OF DIESEL ENGINE SPARK ARRESTOR WITH EXPERIMENTAL VERIFICATIONS

By Eng. Mohamed Mostafa Mohamed Farid Ammar

B.SC., 2010 Akhbar EL-Yom Academy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Under the Supervision of

Prof. Dr. Tarek Abd El-Sadek Osman

Dept. of Mechanical Design and Production Engineering Faculty of Engineering, Cairo University

Dr. Waleed Mamdouh El-Sallamy

Dept. of Mechanical Engineering and Printing Technology

Akhbar El-Yom Academy

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

DESIGN AND MODELING OF DIESEL ENGINE SPARK ARRESTOR WITH EXPERIMENTAL VERIFICATIONS

By Eng. Mohamed Mostafa Mohamed Farid Ammar

B.SC., 2010 Akhbar EL-Yom Academy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Approved by the Examining Committee:

Prof. Dr. Tarek Abd El-Sadek Osman, Thesis Main Advisor Prof. of Mechanical Design and Production, Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Alaa Eldin Radwan, Internal Examiner Prof. of Mechanical Design and Production, Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Mahmoud Youseef, External Examiner Prof. of Automotive Engineering and tractors, Faculty of Engineering, Minia University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Mohamed Mostafa Mohamed Farid Ammar

Date of Birth: 08/08/1988 **Nationality:** Egyptian

E-mail: eng.moh.ammar@gmail.com

Phone: 02-01288036107

Address: Nasr El-Din, El-Haram, Giza

Registration Date: 1/10/2011 **Awarding Date:** .../.../2016

Degree: Master of Science

Department: Mechanical Design and Production Engineering

Supervisors: Prof. Dr. Tarek Abd El-Sadek Osman

Dr. Waleed Mamdouh El-Sallamy

Examiners: Prof. Dr. Tarek Abd El-Sadek Osman (Thesis main advisor)

Prof. Dr. Mohamed Alaa Eldin Radwan (Internal examiner)Prof. Dr. Mohamed Mahmoud Youseef (External examiner)

Prof. of Automotive Engineering and Tractors, Faculty of

Engineering, Minia University

Title of Thesis:

Design and Modeling of Diesel Engine Spark Arrestor with Experimental Verifications

Keywords:

Spark arrestor; Ember; Fire, Explosion; Automotive; Diesel Engine

Summary:

All diesel engines produce exhaust carbon particles. These particles are originated from the carbon deposition formed on the internal surfaces of the exhaust system and the engine. Then they may be expelled at high temperature to the atmosphere. Particles diameter larger than 0.58 mm and at temperature 649°C could ignite flammable materials upon contact, so Spark Arrestor plays critical role in impeding the embers emission as it is a device that arrests the embers and the sparks.

The aim of this study is to make theoretical modeling and experimental verification to compare between two new models of diesel engine Spark Arrestors and a commercial Spark Arrestor in terms of the collection efficiency and acoustics.

Acknowledgments

First and foremost, Praise be to Allah for his help in starting this work and completing it.

I would like to express my boundless gratitude and sincere appreciation to my **parents**, and my beloved **sister** for their continuous support, and encouragement overall the previous years.

I would like to thank **Dr. Tarek Osman**, Professor of Mechanical Design, my role model, for supervising this investigation and for his encouragement, great support, valuable advices, kindness and sincere help, and for his support in my practical life.

Also I would like to thank **Dr. Waleed El-Sallamy**, Assistant Professor of Mechanical Design at Akhbar El-Yom Academy, for suggesting this work which represents the link between the university researches and the industrial problems, also for his great support and valuable guidance throughout the course of this work from the very beginning till now, and also for his great support in my practical life.

I would like to thank **Dr. Tamer Elnady**, Associate Professor of Design and Production department at Ain Shams University, for supporting this work, his valuable guidance throughout the course of this work, and for helping me in accomplishing the tests of this work in ASU Sound and Vibration Laboratory at Ain Shams University.

It is with gratitude that I acknowledge all the staff of "AL MOHANDES INTERNATIONAL Co.", especially Dr. Mohamed Khamis, Chairman, and Eng. Khairy Raouf, The Head of Mechanical Design Dept., for their support to complete this work by helping me in manufacturing these Spark Arrestors, measuring their Sound Insertion Loss, and also offering me time to conduct my measurements at Ain Shams University.

Last but not least, I am very grateful to the staff of **ASU Sound and Vibration Laboratory**, especially my thanks to **Eng. Weam Elsahar**, Research Assistant, for his great assistance.

Table of Contents

ACKNOWLEDGMENTS	I
TABLE OF CONTENTS	II
LIST OF TABLES	IV
LIST OF FIGURES	V
NOMENCLATURE	VIII
ABSTRACT	X
Chapter 1: Introduction	1
1.1.Preamble.	1
1.2.Literature Review	2
1.2.1. Historical Background.	
1.2.2.	
Chapter 2: Theoretical background	16
2.1. Spark Arrestors Design Methodologies	
2.2. Factors affecting the type of flow	
2.3. Theoretical Modeling of spark arrestors' Collection Efficiency	
2.4. Theoretical Modeling of spark arrestors' Sound Transmission Loss,	
Flow Distribution, and Pressure Drop	23
Chapter 3: Design and Modeling	
3.1. Spark Arrestor Models Description	
3.1.1. Commercial Spark Arrestor of Centrifugal Collection Type	
3.1.2. Centrifugal Quenching Spark Arrestor Type (Prototype A)	
3.1.3. Centrifugal Collection Spark Arrestor Type (Prototype B)	
3.2. Theoretical Modeling of Spark Arrestors' Collection Efficiency	
3.3. Theoretical Modeling of Spark Arrestors' Sound Transmission Loss	
3.3.1. Commercial Spark Arrestor	33
3.3.2. Spark Arrestor Prototype A	34
3.3.3. Spark Arrestor Prototype B	35
3.4. Theoretical Modeling of Spark Arrestors' Pressure Drop	37
3.5. Spark Arrestors Cost and Man Hour	
Chapter 4: Experimental work	38
4.1. Spark Arrestor Collection Efficiency	38
4.1.1. Test Methodology	
4.1.2. Description of Test Rig	
4.1.3. Experiment Procedure	
4.2. Spark Arrestor Sound Transmission Loss	
4.2.1. Test Methodology	
4.2.2. Description of Test Rig and Measurement System	
4.3. Spark Arrestor Sound Insertion Loss.	
4.3.1. Description of Test Rig	
Chapter 5: The Modeling Results	
5.1. Commercial Spark Arrestor	
5.1.1. Spark Arrestor Collection Efficiency	
5.1.2. Spark Arrestor Sound TL	50
5.1.3. Spark Arrestor Pressure Drop	
5.1.4. Spark Arrestor Sound IL	

5.2. Spark Arrestor Prototype A	54
5.2.1. Spark Arrestor Collection Efficiency	54
5.2.2. Spark Arrestor Sound TL	
5.2.3. Spark Arrestor Pressure Drop	
5.2.4. Spark Arrestor Sound IL	
5.3. Spark Arrestor Prototype B	
5.3.1. Collection Efficiency Spark Arrestor	59
5.3.2. Spark Arrestor Sound TL	
5.3.3. Spark Arrestor Pressure Drop	64
5.3.4. Spark Arrestor Sound IL	64
5.4. Results Comparison of the Three Spark Arrestors	65
5.4.1. Spark Arrestor Collection Efficiency	65
5.4.2. Spark Arrestor Sound TL	66
5.4.3. Spark Arrestor Pressure Drop	67
5.4.4. Spark Arrestor Sound IL	68
Chapter 6: Conclusions	69
Future Work	69
References	70
APPENDIX A: Assembly and Work Drawings	

List Of Tables

Table 3.1: The dimensions of different elements of the Commercial Spark Arrestor	33
Table 3.2: The dimensions of different elements of the Spark Arrestor Prototype A	34
Table 3.3: The dimensions of different elements of the Spark Arrestor Prototype B	36
Table 3.4: The Spark Arrestors Manufacturing Cost	37

List Of Figures

Figure 1.1: Draft generating chimney cap	2
Figure 1.2: Bonnet	2
Figure 1.3: Erskine's Chimney plan	3
Figure 1.4: Erskine's Chimney low annoyance	3
Figure 1.5: Schultz's Stack	4
Figure 1.6: Yankee Stack	4
Figure 1.7: Diamond Stack	4
Figure 1.8: Smoke Box	5
Figure 1.9: Wilder Stack	5
Figure 1.10: Beattie's cone	6
Figure 1.11: Hovey Spark Arrester	6
Figure 1.12: John P. Laird's Bonnet Pipe in 1864	7
Figure 1.13: Farrand spark arrester	
Figure 1.14: Hughes spark arrester	
Figure 1.15: Smith stack	
Figure 1.16: schematic diagram to the deflector	9
Figure 1.17: Spark Arrestor for diesel locomotive engines	
Figure 1.18: External Spark Arrestor	
Figure 1.19: Exhaust Muffler and Spark Arrestor	
Figure 1.20: Engine Muffler and Spark Arrestor	
Figure 1.21: Engine Muffler and Spark Arrestor Modification	
Figure 1.22: Combination Spark Arrestor and Aspirating Muffler	
	15
Figure 1.23: Compact Economical Spark Arrestor and Muffler	
Figure 1.23: Compact Economical Spark Arrestor and Muffler	16
Figure 1.23: Compact Economical Spark Arrestor and Muffler	16 17
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor	16 17 17
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor	16 17 17 18
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor.	16 17 17 18
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor	16 17 17 18 19
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor.	16 17 18 19 19
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors.	16 17 18 19 19
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element.	16 17 18 19 19 20 20
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network.	16 17 18 19 19 20 20
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network. Figure 2.11: The representation of a two-port element relating two pairs of state variables (p and	16 17 18 19 19 20 20
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network. Figure 2.11: The representation of a two-port element relating two pairs of state variables (p and Q).	16 17 18 19 20 20 23
Figure 1.23: Compact Economical Spark Arrestor and Muffler Figure 2.1: Horizontal Waikato Spark Arrestor Figure 2.2: Different Types of Centrifugal Spark Arrestors Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network. Figure 2.11: The representation of a two-port element relating two pairs of state variables (p and Q). Figure 3.1: Schematic Drawing of the Commercial Spark Arrestor.	16 17 18 19 20 23 24
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network. Figure 2.11: The representation of a two-port element relating two pairs of state variables (p and Q). Figure 3.1: Schematic Drawing of the Commercial Spark Arrestor. Figure 3.2: The Commercial Spark Arrestor Sub Assembly.	16 17 18 19 20 20 23 24
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network. Figure 2.11: The representation of a two-port element relating two pairs of state variables (p and Q). Figure 3.1: Schematic Drawing of the Commercial Spark Arrestor. Figure 3.2: The Commercial Spark Arrestor Sub Assembly. Figure 3.3: Schematic Drawing of Spark Arrestor Prototype A.	16171819202324262929
Figure 1.23: Compact Economical Spark Arrestor and Muffler Figure 2.1: Horizontal Waikato Spark Arrestor Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network. Figure 2.11: The representation of a two-port element relating two pairs of state variables (p and Q). Figure 3.1: Schematic Drawing of the Commercial Spark Arrestor. Figure 3.2: The Commercial Spark Arrestor Sub Assembly. Figure 3.4: Spark Arrestor Prototype A Sub Assembly.	16 17 18 19 20 23 24 29 29 30
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network. Figure 2.11: The representation of a two-port element relating two pairs of state variables (p and Q). Figure 3.1: Schematic Drawing of the Commercial Spark Arrestor. Figure 3.2: The Commercial Spark Arrestor Sub Assembly. Figure 3.3: Schematic Drawing of Spark Arrestor Prototype A. Figure 3.4: Spark Arrestor Prototype A Sub Assembly. Figure 3.5: Schematic Drawing of Spark Arrestor Prototype B	16 17 18 19 20 23 24 26 29 30 31
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network. Figure 2.11: The representation of a two-port element relating two pairs of state variables (p and Q). Figure 3.1: Schematic Drawing of the Commercial Spark Arrestor. Figure 3.2: The Commercial Spark Arrestor Sub Assembly. Figure 3.3: Schematic Drawing of Spark Arrestor Prototype A. Figure 3.4: Spark Arrestor Prototype A Sub Assembly. Figure 3.5: Schematic Drawing of Spark Arrestor Prototype B. Figure 3.6: Spark Arrestor Prototype B Sub Assembly.	16 17 18 19 20 23 24 29 30 31
Figure 1.23: Compact Economical Spark Arrestor and Muffler. Figure 2.1: Horizontal Waikato Spark Arrestor. Figure 2.2: Different Types of Centrifugal Spark Arrestors. Figure 2.3: Vertical Waikato Spark Arrestor Figure 2.4: Screen Spark Arrestor Figure 2.5: Supertrapp Spark Arrestor. Figure 2.6: Krizman type Spark Arrestor. Figure 2.7: Electrostatic precipitator spark arrestors. Figure 2.8: Turbocharger. Figure 2.9: Two Port Element. Figure 2.10: scattering matrix formulation for two-port number m in a network. Figure 2.11: The representation of a two-port element relating two pairs of state variables (p and Q). Figure 3.1: Schematic Drawing of the Commercial Spark Arrestor. Figure 3.2: The Commercial Spark Arrestor Sub Assembly. Figure 3.3: Schematic Drawing of Spark Arrestor Prototype A. Figure 3.4: Spark Arrestor Prototype A Sub Assembly. Figure 3.5: Schematic Drawing of Spark Arrestor Prototype B	161718192023242629303131

Figure 3.10: SIDLAB network for the Commercial Spark Arrestor	33
Figure 3.11: SIDLAB network for the Spark Arrestor Prototype A	34
Figure 3.12: SIDLAB network for the Spark Arrestor Prototype B	36
Figure 4.1: Real Spark Arrestor Test Apparatus	39
Figure 4.2: Oil-injected Rotary Screw Compressors	39
Figure 4.3: Air Dryer	39
Figure 4.4: Pitot tube	40
Figure 4.5: SwemaMan 60	41
Figure 4.6: Venturi tube	41
Figure 4.7: Carbon Feeder	42
Figure 4.8: Gate Valve 1.5"	42
Figure 4.9: Ball Valve 1.5"	42
Figure 4.10: Positive Trap	43
Figure 4.11: Digital Scale	43
Figure 4.12: The Pipe four poles	44
Figure 4.13: The Pipe four poles	45
Figure 4.14: Prototype A and B Sound TL Test Rig	46
Figure 4.15: Commercial Model Sound TL Test Rig	46
Figure 4.16: Schematic for Sound TL Measuring System	47
Figure 4.17: Schematic for Pressure Drop Measuring System	
Figure 4.18: Spark Arrestor IL Test Rig	
Figure 5.1: Commercial Spark Arrestor Collection Efficiency using Particle Size 0.5mm	
Figure 5.2: Commercial Spark Arrestor Collection Efficiency using Particle Size 0.2mm	
Figure 5.3: Comparison between the Collection Efficiency Measurements of the Commercial Spa	
Arrestor for Particle Sizes 0.5 and 0.2 mm.	50
Figure 5.4: Commercial Spark Arrestor Sound TL experimental and theoretical results without	
flow	51
Figure 5.5: Commercial Spark Arrestor Sound TL experimental and theoretical results with 4 m/s	s
flow speed	
Figure 5.6: Commercial Spark Arrestor Sound TL experimental and theoretical results with 7 m/s	s
flow speed.	
Figure 5.7: Commercial Spark Arrestor Sound TL experimental and theoretical results with 10 m	/s
flow speed.	
Figure 5.8: Comparison between TL measurements with flow	53
Figure 5.9: Commercial Spark Arrestor Pressure Drop	
Figure 5.10: Commercial Spark Arrestor Sound IL	
Figure 5.11: Prototype A Collection Efficiency using Particle Size 0.5mm	
Figure 5.12: Prototype A Collection Efficiency using Particle Size 0.2mm	
Figure 5.13: Comparison between the Collection Efficiency Measurements of Prototype A for	
Particle Sizes 0.5 and 0.2 mm.	55
Figure 5.14: Prototype A Sound TL experimental and theoretical results without flow	
Figure 5.15: Prototype A Sound TL experimental and theoretical results with 10 m/s flow speed	
Figure 5.16: Prototype A Sound TL experimental and theoretical results with 25 m/s flow speed	
Figure 5.17: Prototype A Sound TL experimental and theoretical results with 40 m/s flow speed	
Figure 5.18: Comparison between TL measurements with flow	
Figure 5.19: Spark Arrestor Prototype A Pressure Drop	
Figure 5.20: Spark Arrestor Prototype A Sound IL	
Figure 5.21: Prototyne B Collection Efficiency using Particle Size 0.5mm	

Figure 5.22: Prototype B Collection Efficiency using Particle Size 0.2mm	60
Figure 5.23: Comparison between the Collection Efficiency Measurements of Prototype B for	
Particle Sizes 0.5 and 0.2 mm.	61
Figure 5.24: Prototype B Sound TL experimental and theoretical results without flow	61
Figure 5.25: Prototype B Sound TL experimental and theoretical results with 10 m/s flow speed	l62
Figure 5.26: Prototype B Sound TL experimental and theoretical results with 25 m/s flow speed	l62
Figure 5.27: Prototype B Sound TL experimental and theoretical results with 40 m/s flow speed	l63
Figure 5.28: Comparison between TL measurements with flow	63
Figure 5.29: Spark Arrestor Prototype B Pressure Drop	64
Figure 5.30: Spark Arrestor Prototype B Sound IL	65
Figure 5.31: Comparison between Spark Arrestors' Collection efficiencies for particle size 0.5 mm	65
Figure 5.32: Comparison between Spark Arrestors' Collection efficiencies for particle size 0.2 mm	66
Figure 5.33: Comparison between Spark Arrestors' TL at Flow Speed 0 m/s	66
Figure 5.34: Comparison between Spark Arrestors' TL at Flow Speed 10 m/s	67
Figure 5.35: Comparison between Spark Arrestors' pressure drop	67
Figure 5.36: Comparison between Spark Arrestors' IL	68

Nomenclature

A Cross sectional area

c Sound speed

C.E. Collection EfficiencyD_H Hydraulic diameter

d Pipe diameterF_D Drag force

 $\mathbf{F_g}$ Gravitational force vector

F_{ext} External force
 f Frequency
 g Gravity vector

h_e Head loss

IL Sound Insertion Lossk Turbulent kinetic energy

k_e Loss coefficientk Wave number

L Length

 \mathbf{M} Mach number $\mathbf{m}_{\mathbf{p}}$ Particle mass

P Stagnation pressure
 P_s Fluid static pressure
 p Acoustic pressure
 p^s Source pressure

P_k Net production per unit dissipation of k

Q Volumatric flow rate

q Acoustic Volume velocity
 q^s Source volume velocity

ReReynolds number \mathbf{R}_f Flow resistance $\mathbf{S}_{\mathbf{m}}$ Scattering matrixSPLSound pressure level

T_{ij} Element of the two port transfer matrix

TL Sound Transmission Loss

u Particle Velocity

u', v', w' Fluctuation velocity components in x, y, z directions

v Fluid velocity

W Width

μ Fluid dynamic viscosity

v Kinematic viscosity

ρ Fluid density

ω The specific dissipation rate

ε Turbulence dissipation

 μ_T The eddy viscosity

 $\alpha, \beta, \beta^*, \sigma, \sigma^*$ Model constants

 τ_p Particle velocity response time

 ρ_p Particle density

ω Angular frequency

 λ Wave length

Abstract

The sparks and embers which are produced from combustion sources could lead to fire and explosions as a result of ignition of flammable materials which are exposed to these emissions. There are many sources of combustion that produce embers such as internal combustion engines, wood burning stoves, steel mill, cement plant,.....etc, so Spark Arrestor plays critical role in impeding the embers emission as it is a device that arrests the embers and the sparks.

The aim of this study is to make theoretical modeling and experimental verification to compare between two new Prototypes of Diesel Engine spark arrestor and a commercial spark arrestor in terms of collection efficiency, acoustics, pressure drop, and cost.

COMSOL software using finite element is used to model the collection efficiency while SIDLAB using two-port theory is used to model the acoustic characteristics.

The two new Prototypes A and B were manufactured and tested to verify experimentally the theoretical modeling through the different test rigs. Three different flow rates were selected for the experimental verifications.

On the other hand, the three Spark Arrestors were experimented on a real diesel engine of 32 KW.

The theoretical models of collection efficiency were shown to be matched with the experimental verifications for Prototype A within 98.8%, Prototype B within 92.5%, and the commercial spark arrestor within 89.4%.

While the theoretical models of transmission loss were shown to be matched with the experimental verifications for Prototype A within 95.2%, Prototype B within 70%, and the commercial spark arrestor within 83%.

And the theoretical models of pressure drop were shown to be matched with the experimental verifications for Prototype A within 93.75%, Prototype B within 98.27%, and the commercial spark arrestor within 90%.

The three spark arrestors were experimented on real diesel engine at different loads in compliance with ISO 8528-10 for diesel engine generators. Complete arrest for sparks were shown during the period of the experiment and the insertion loss measured ranges from 5.3 to 13.5 dB.

According to the theoretical modeling and measurement results in terms of collection efficiency, acoustic performance, and pressure drop of the three Spark Arrestors and their cost, the Spark Arrestor Prototype B was shown to have the best performance.

Chapter 1: Introduction

1.1. Preamble

Fire and Explosion have serious effect on business, economy, and life. Inefficient design, inadequate maintenance and understanding of risks may be a result of fire and explosion, [1].

Companies which use flammable materials shall put in its account the fire safety. For example in petroleum companies the flash point of their substances shall be known and put in safety environment. The flash point helps in knowing the maximum temperature that these substances may be exposed without causing fire.

This work focus on Spark Arrestors' design (collection efficiency and acoustics performance), in the field of diesel engines as Spark Arrestor is part of the exhaust system.

Spark Arrestors are installed at locations where sparks may be dangerous to the surrounding environment, [1]. They are provided on the exhaust of source or fire where a hot particulate might be released (i.e., internal combustion engines, chimneys, incinerator stacks, etc.).

Spark Arrestor is used to prevent the risk of fire due to the burning of flammable materials caused by sparks emission from diesel engine exhausts, [2]. As Spark Arrestor is a device traping exhaust carbon particles to a size below 0.58 mm in diameter. If particles larger than 0.58 mm in diameter and at temperatures of 649°C are expelled then it will be capable of igniting cellulose materials upon contact, [3].

Spark Arrestor is made from stainless steel, carbon steel, or aluminized steel as aluminized steel is used to resist heat, corrosive gases, and to extend service life of arrestor, [4].

Spark Arrestor place in most of engines is in exhaust manifold where the exhaust from each cylinder of the engine is collected. Then the exhaust flows out of the manifold to a spark Arrestor or muffler or both, [3].

The Spark Arrestor inclined more than 60 degrees from its efficient operating position may not arrest sparks adequately. As the United States Department of Agriculture (USDA) Forest Service Standard 5100-1c allows 60 degrees deviation, but at least 15 degrees should be reserved for deviations because of road grade or slope, [3].

Spark Arrestors shall have a method for removing the cumulative carbon particles such as a cleanout plug, removable end cap, snap ring or a removable end cleanout, [3].