INTRADIALYTIC HYPOTENSION IN DIABETIC HEMODIALYSIS PATIENTS

Thesis

Submitted for partial fulfillment of Master Degree in Nephrology

By

Ashraf Mohammed Ismail Taha

Diploma in Internal Medicine

Supervised By

PROF. DR. IMAN IBRAHEIM SARHAN

Prof. of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

DR. AHMED AZIZ ABD EL NABY

Assist. Prof. of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

DR. SAHAR MAHMOUD SHAWKY

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain shams University
2011

انخفاض ضغط الدم أثناء الغسيل الكلوي لدى مرضى السكري

بروتوكول دراسة مقدم استيفاء ً جزئيا ً لمتطلبات الحصول على درجة الماجيستير في أمراض الكلى

> مقدمه أشرف محمد إسماعيل طه دبلوم الباطنة العامة

المشرفون
أد. إيمان إبراهيم سرحان
أستاذ الباطنة و الكلى
كلية الطب – جامعة عين شمس
كلية الطب عزيز عبد النبي
أستاذ مساعد الباطنة و الكلى
كلية الطب – جامعة عين شمس
كلية الطب – جامعة عين شمس
مدرس الباطنة و الكلى

كلية الطب جامعة عين شمس ٢٠١١

SUMMARY

Symptomatic intradialytic hypotension (IDH) is a common complication of hemodialysis (HD). It remains an important cause of morbidity and mortality in hemodialysis (HD) patients

So, the aim of the current research is to evaluate intradialytic hypotension in diabetic hemodialysis patients and its associated risk factors. The study included 60 patients under maintenance hemodialysis. They comprised 35 males (58.3 %) and 25 females (41.7 %) with a mean age of 42.8 ± 13.7 years.

In the current study, comparison of the demographic characteristics between the studied group didn't reveal any significant differences.

Comparison of the hematological parameters between the studied groups shows no significant differences. In respect to the serum electrolyte levels, the present study didn't reveal any significant differences between the studied groups.

As regards the other laboratory parameters, the present study failed to prove any significant differences between the studied groups.

LIST OF ABBREVIATIONS

ADMA	Asymmetric dimethylarginine
AGEs	Advanced glycation end products
AHSG	Alpha2-heremans schmid glycoprotein
ANS	Autonomic nervous system
APC	Antigen-presenting cell
BP	Blood pressure
CAD	Coronary artery disease
cAMP	Cyclic adenosine monophosphate
CAN	Cardiac autonomic neuropathy
CHD	Coronary heart disease
CHF	Congestive heart failure
CHOIR	Correction of hemoglobin and outcomes in renal
	insufficiency
CKD	Chronic kidney disease
CKD CNAUSA	
	Chronic kidney disease
CNAUSA	Chronic kidney disease Canada-usa
CNAUSA CRF	Chronic kidney disease Canada-usa Chronic renal failure
CNAUSA CRF CRP	Chronic kidney disease Canada-usa Chronic renal failure C-reative protein
CNAUSA CRF CRP	Chronic kidney disease Canada-usa Chronic renal failure C-reative protein Cardiovascular
CNAUSA CRF CRP CV DAN	Chronic kidney disease Canada-usa Chronic renal failure C-reative protein Cardiovascular Diabetic autonomic neuropathy
CNAUSA CRF CRP CV DAN DDS	Chronic kidney disease Canada-usa Chronic renal failure C-reative protein Cardiovascular Diabetic autonomic neuropathy Dialysis disequilibrium syndrome
CNAUSA CRF CRP CV DAN DDS DN	Chronic kidney disease Canada-usa Chronic renal failure C-reative protein Cardiovascular Diabetic autonomic neuropathy Dialysis disequilibrium syndrome Diabetic nephropathy
CNAUSA CRF CRP CV DAN DDS DN ECG	Chronic kidney disease Canada-usa Chronic renal failure C-reative protein Cardiovascular Diabetic autonomic neuropathy Dialysis disequilibrium syndrome Diabetic nephropathy Electrocardiography

ET-1	Endothelin 1
EUTox	European uremic toxin
FDA	United states food and drug administration
GFR	Glomerular filtration rate
GI	Gastrointestinal
HD	Hemodialysis
НОРЕ	Heart outcomes prevention evaluation
HRT	Heart rate turbulence
IDH	Intradialytic hypotension
KDOQI	Kidney disease outcomes quality initiative
LDF	Laser-doppler blood flowmeter
LDL	Low density lipoprotein
LVH	Left ventricular hypertrophy
MDRD	Modification of diet in renal disease
MIA	Malnutrition, inflammation and atherosclerosis
NICE	National institute for health and clinical excellence
NO	Nitric oxide
ONTARGET	Ongoing telmisartan alone and in combination with
	ramipril global endpoint trail
PAD	Peripheral arterial disease
PDV	Periflux blood flow decreasing velocity
PET	Photon emission computed tomography
PTH	Parathyroid hormone
PVB	Premature ventricular beat
SDMA	Symmetric dimethylarginine

SGA	Subjective global assessment
T1DM	Type 1 diabetes milletus
T2DM	Type 2 diabetes milletus
TNF	Tumor necrosis factor
UF	Ultrafiltration
UKPDS	Uk prospective diabetes study
UKRR	United kingdom renal registry

CONTENTS

Introduction	1
Review of Literature	
Chronic kidney disease and hemodialysis	4
Diabetes in hemodialysis patients	44
• Intradialytic hypotension	٥٧
Patients and Methods	69
Results	75
Discussion	95
Summary & Conclusions	101
References	106
Arabic Summary	

List Of Tables

No	Title	Page
Review of Literature		
1	Stages of CKD	5
2	Risk factors for development and progression of	46
	diabetic nephropathy	
Resu	ılts	
1	Comparison between the demographic characteristics in	75
	diabetic and non-diabetic patients	
2	Comparison between the hemodialysis parameters in	76
	diabetic and non-diabetic patients	
3	Comparison between the hematological parameters in	77
	diabetic and non-diabetic patients	
4	Comparison between serum electrolytes levels in	78
	diabetic and non-diabetic patients	
5	Comparison between the other laboratory findings in	79
	diabetic and non-diabetic patients	
6	Comparison between diabetic and non-diabetic patients	80
	regarding the prevalence of intradialytic hypotension	
	(IDH)	
7	Comparison between diabetic and non-diabetic patients	81
	regarding the prevalence of autonomic neuropathy	
8	Comparison between the types of autonomic neuropathy	82
	in diabetic and non-diabetic groups	
9	Comparison between patients with IDH and patients	83

	without IDH in diabetic group regarding the	
	demographic characteristics	
10	Comparison between patients with IDH and patients	84
	without IDH in diabetic group regarding the	
	hemodialysis parameters	
11	Comparison between patients with IDH and patients	85
	without IDH in diabetic group regarding the	
	hematological parameters	
12	Comparison between patients with IDH and patients	86
	without IDH in diabetic group regarding the serum	
	electrolyte levels	
13	Comparison between patients with IDH and patients	87
	without IDH in diabetic group regarding the other	
	laboratory findings	
14	Comparison between patients with IDH and patients	88
	without IDH in diabetic group regarding the prevalence	
	of autonomic neuropathy	
15	Comparison between patients with IDH and patients	89
	without IDH in non-diabetic group regarding the	
	demographic characteristics	
16	Comparison between patients with IDH and patients	90
	without IDH in non-diabetic group regarding the	
	hemodialysis parameters	
17	Comparison between patients with IDH and patients	91
	without IDH in non-diabetic group regarding the	

	hematological parameters	
18	Comparison between patients with IDH and patients without IDH in non-diabetic group regarding the serum electrolyte levels	111
19	Comparison between patients with IDH and patients without IDH in non-diabetic group regarding the other laboratory findings	112
20	Comparison between patients with IDH and patients without IDH in non-diabetic group regarding the prevalence of autonomic neuropathy	113

List Of Figures

No	Title	Page
Review of Literature		
1	Simplified scheme for pathogenesis of diabetic nephropathy	47
2	Biology of intradialytic hypotension	59
Results		
1	Comparison of interdialytic weight gain between the studied groups	76
2	Prevalence of IDH in the studied groups	80
3	AN in the studied groups	81
4	Comparison between the types of autonomic neuropathy in diabetic and non-diabetic groups	82

CHRONIC KIDNEY DISEASE AND HEMODIALYSIS

Definition

KDOQI defined chronic kidney disease either by a reduced glomerular filtration rate (GFR), irrespective of etiology, or by signs of kidney damage such as proteinuria (including microalbuminuria), hematuria, or abnormal imaging or biopsy findings. Somewhat arbitrarily, reduced GFR is defined as GFR < 60 mL/min/1.73 m². To exclude cases of acute kidney injury, these abnormalities have to be present for more than 3 months, and 2 out of 3 urine samples obtained at different times have to be positive for protein or albumin. Also arbitrarily, 5 stages of CKD were defined (Table 1). Stages 3–5 are defined solely on the basis of GFR, whereas stages 1 and 2 require the presence of markers of kidney damage (*National Kidney Foundation*, 2002).

Increased urinary excretion of albumin and protein are the primary signs of kidney damage. Microalbuminuria refers to increased albumin excretion above 30 mg/day but less than 300 mg/day. With these small amounts of albumin excretion, the urine dipstick is usually negative for protein. Macroalbuminuria or overt proteinuria means more than 300 mg albumin excretion per day; the dipstick is usually positive, unless the urine is very dilute. For the assessment of GFR, an estimating equation was developed (*Matz, 2002*).

$$CL_{cr}$$
 $(mL/min) = IBW$ or adjusted
body weight) × $(0.85 \ if \ female)$ ×
 $(140 - age)/(72 \times Cr)$

Another equation was developed from the CKD population participating in the MDRD (Modification of Diet in Renal Disease) trial (*Levey et al.*, 1999).

Table-1 Stages of CKD

Stage 1	GFR \geq 90 mL/min/1.73 m ² , with signs of kidney damage
Stage 2	GFR 60–89 mL/min/1.73 m ² , with signs of kidney damage
Stage 3	GFR 30–59 mL/min/1.73 m ²
Stage 4	GFR 15–29 mL/min/1.73 m ²
Stage 5	GFR <15 mL/min/1.73 m ²

The abbreviated version requires only serum creatinine, age, sex, and race, and is the recommended formula for estimating GFR (European Best Practice Guidelines Expert Group on Hemodialysis, 2002):

eGFR (mL/min/1.73m²) = $186 \times (\text{serum creatinine})^{-1.154} \times (\text{age})^{-0.203} \times 1.212$ (if the subject is African-American) $\times 0.742$ (if female).

Many laboratories have implemented automatic reporting of reduced estimated GFR (< 60 mL/min/1.73 m²). Standardized

GFR estimates (*Hallan et al.*, 2004). Standardized serum creatinine assays yield creatinine values that are 5% lower than those obtained with other assays. It is important to be aware of the limitations of these estimating equations. They are inaccurate at higher ranges of GFR, in Asians, in the elderly, in people with extremes of body composition, and with changing levels of renal function, for example in acute renal failure (*Stevens et al.*, 2006).

Epidemiology

Chronic kidney disease (CKD) has been recognized as a major health problem worldwide (Levey et al., 2007). It is common in the general population and associated with major health care expenditures (Coresh et al., 2008). For instance, there were nearly half a million patients receiving renal replacement therapy in the United States in 2005, costing Medicare over \$20 billion and non-Medicare payers over \$12 billion (Foley and Collins, 2007). Patients with end-stage renal disease (ESRD) represent only the "tip of the iceberg" of the entire population with CKD. There are an estimated 26 million people with CKD (not on dialysis) in the United States (Coresh et al., 2007). Medicare costs for CKD were estimated at \$42 billion in 2005 (USRDS, 2007).

The prevalence of CKD has been estimated from data in the National Health and Nutrition Examination Surveys (NHANES). These are large, nationally representative surveys of the non-

institutionalized US population, conducted by the National Center for Health Statistics. The prevalence of CKD stages 1–4 was about 10% in the 1988–1994 sample (n = 15,488) and increased to 13% in the 1999–2004 sample (n = 13,233). The increased prevalence of obesity, diabetes, and hypertension, together with the aging of the population, is likely responsible for the increasing prevalence of CKD. Of the 13% with CKD, about 5% had stages 1 and 2 and 8% had stages 3 and 4. About 26 million US adults have CKD. Similar prevalence rates have been found in other countries worldwide. A population-based study from Beijing also found a 13% prevalence rate for CKD. A survey from Australia reported an even higher prevalence, about 16% of the adult population. CKD is particularly common in the elderly, with 38% of US subjects older than 70 years affected (*Coresh et al.*, 2007).

Worldwide, a recent systematic review reported a 23% to 36% prevalence of CKD in persons age 64 or older (*Zhang and Rothenbacher*, 2008). However, it is important to bear in mind that these prevalence estimates are based on the MDRD equation for estimating GFR. This equation was developed from a much younger study population, and none of the subsequent validation studies included large numbers of elderly (only 13% of all study participants were older than 65 years) (*Stevens et al.*, 2007).

Therefore GFR estimation from the MDRD equation may not be accurate in the elderly and may lead to inflated numbers of affected people (Campbell and O'Hare, 2008). The risk of progression to