Correlation of Plasma Homocysteine Level and Vascular Access Thrombosis in Hemodialysis Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Presented By Ahmad Shaaban Serag El Deen

M. B. B. Ch. Faculty of Medicine Ain Shams University

Under Supervision of

Prof. Mahmoud Abd El Fatah Abdullah

Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Prof. Yasser Soliman Ahmed

Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Dr. Esam Noor El Deen Afifi

Lecturer of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Faculty of Medicine A in Shams University

ACKNOWLEDGEMENT

First and foremost, I thank **A llah**, who gave me the strength to accomplish this work.

Words can not express my sincere gratitude and appreciation to **Prof. Mahmoud A bd A I Fattah A bdullah**, Professor of I nternal Medicine & Nephrology, Head of Nephrology Department, Faculty of Medicine, A in Shams University; I had the honor to work under his supervision, I appreciate his generous guidance, K een interest and precious time he offered me throughout this study. His scientific advices were kindly given to me and are beyond adknowledgement.

I wish also to express my deep gratitude to **Prof. Y asser Soliman A hmed** Professor of Internal Medicine &
Nephrology, Faculty of Medicine, A in Shams University, for
his continuous support, valuable remarks meticulous supervision
and for offering me much of his time and effort throughout this
study.

I would like to express my sincere indebtedness and profound gratitude to, **Dr. Essam Noor A I Deen**, Lecturer of I nternal Medicine & Nephrology, Faculty of Medicine, A in Shams University, for his continuous guidance & valuable suggestions

LIST OF ABBREVIATIONS

Ab	Antibody
ACA	Anticardiolipin antibodies
ACE	Angiotensin-Converting Enzyme
ADP	Adenosine diphosphate
Alb	Albumin
AVF	Arterio-Venous Fistula
bHcy	Bound Hcy
Ca	Calcium
CBS	Cystathionine B-synthase
CE-LIF	Capillary electrophoresis with laser-induced
	fluorescence detection
CH.GN.	Chronic glomerulonephritis
Chr.Pyeloneph.	Chronic Pyelonephritis
Cr.	Creatine
CRP	C-reactive protein
CVD	Cardio Vacsular Disease
DM	Diabetes Mellitus
EC	Electrochemical detection
EIA	Enzyme immunoassay
ESRD	End stage renal disease
fHcy	Free Hcy
GFR	Glomerular Filtration Rate
Hb	Hemoglobin
НСТ	Hematocrit
HCV	Hepatitis C virus
Нсу	Homocysteine
Hcy-SR	Hcy-mixed disulfide
HDL	High density lipoprotein
HTN	Hypertension
IL	Interleukin
ISHD	Ischemic heart disease
LA	Lupus anticoagulant

List of Abbreviations

LC	Liquid chromatography
LDL	Low density lipoprotein
Lp	Lipoprotein
MTHFR	Methylenetetrahydrofolate reductase
NO	Nitric Oxide
NTD	Neural Tube Defects
Obst. Uropathy	Obstructive uropathy
PAI-1	Plasminogen activator inhibitor type \
PDGF	platelet-derived growth factor
PKD	Polycystic kidney disease
PLT	Platelets
POi	Phosphorus
TG	triglycerides
tHcy	Total Hey
TNF	Tumor necrosis factor
t-PA	Tissue plasminogen activator
UV	Ultraviolet
vWF	von Willebrand factor

LIST OF CONTENTS

List of Abbreviations	
List of Figures	V
List of Tables	_VII
Introduction	\
Aim of the Work	٣٣
Review of Literature	٥
Homocysteine	٥
Vascular access thrombosis	۲٥
Homocysteine: Cardiovascular Risk Factor in ESRD_	٥٧
Patients & Methods	٦٧
Results	90
Discussion	_1.9
Summary & Conclusion	119
Recommendations	171
References	
Arabic Summary	

LIST OF FIGURE

	Title	Page
Figure \	Molecular species of homocystiene	٧
Figure 7	Homocysteine metabolism	١.
Figure "	Fistula versus graft survival in patients	٣٢
	starting hemodialysis with a permanent	
	vascular access comparing DOPPS results	
	from Europe and United States	
Figure ٤	Showing comparison of Hb and Hct among	٩٨
	studied groups	
Figure °	Showing comparison of urea level among	99
	studied groups	
Figure 7	Showing correlation between tHcy level and	١٠٦
	LDL in all studied patients	
Figure Y	Showing correlation between tHcy level and	١٠٨
	Hb in Group I	

LIST OF TABLES

	Title	Page
Table \	Comparison of plasma levels of fasting	11
	plasma tHcy	
Table 7	Drug effects on plasma Hcy	١٤
Table "	Age distribution among studied groups	90
Table [£]	Sex distribution among studied groups	90
Table °	Etiology of ESRD among studied groups	97
Table 7	Duration of hemodialysis	97
Table ^V	Evidence of ischemic heart disease among	97
	studied groups	
Table ^	HCV state among studied groups	97
Table 9	Dialysis hypotension among studied groups	97
Table \.	Laboratory among studied groups	91
Table 11	Laboratory among studied groups according	١
	to ISHD	
Table 17	Laboratory among studied groups according	1 • 1
	to HCV state	
Table 18	Laboratory among studied groups according	1.7
	to dialysis hypotension	
Table \ \ \ \ \	Laboratory among studied groups according	١٠٣
	to number of AVF thrombosis	
Table 10	Correlation between homocysteine and other	1.0
	laboratory parameters among studied	
	patients	
Table 17	Correlation between homocysteine and other	١٠٧
	laboratory parameters among different	
	groups	

INTRODUCTION

Homocysteine is a sulfar containing amino acid that result from demethylation of methionine (1).

Recently it has attracted considerable interest as it may, by several mechanisms mediate premature atherosclerosis and cardiovascular diseases (7)

Vascular access integrity remains the Achilles heel of modern hemodialysis (Υ). Without an adequate vascular access; hemodialysis efficiency is reduced, which results in increased mortality and morbidity (\S). Thrombosis is the primary cause of access failure in polytetrafluroethyelene grafts and native arteriovenous fistulas (\S). The access dysfunction due to thrombosis is the most common cause of hospitalization among maintenance hemodialysis patients (\S).

Serum total homocysteine usually increases in dialysis patients with end-stage renal disease (Y). The cause of hyperhomocysteinemia in CRF (chronic renal failure) is still under intensive scrutiny (A). Hyperhomocysteinemia may still represent one of many factors in uremia, which contributes to increased cardiovascular risk (A). Recently vascular access thrombosis in dialysis patients is claimed to be associated with hyperhomocysteinemia (Y·).

AIM OF THE WORK

The aim of this study is to evaluate the role of hyperhomocysteinemia as a risk factor for vascular access thrombosis in hemodialysis patients.

Honocysteine

Introduction:

Homocysteine (Hcy) is a sulphur containing amino acid that consists of various forms: a protein-bound fraction (\checkmark - \land · \checkmark), a free oxidized form (\curlyvee · \checkmark · \checkmark) and a free reduced form (\lnot · \checkmark), which recently has attracted considerable interest as it may promote vascular disease as well as its plasma level elevation is associated with risk assessment and diagnosis of other clinical conditions.(\Lsh)

Biochemistry:

General Metabolism

Hey is an endogenous sulfur-containing amino acid intermediate of the essential amino acid methionine and is not obtained from the diet. An overview of the metabolic pathway is presented in Figure Y. Methionine enters the one-carbon metabolic cycle either through the dietary consumption of methionine-containing protein or through endogenous protein breakdown. It is then converted intracellularly to *S*-adenosylmethionine, which functions as a universal methyl donor for a variety of important acceptors,

including nucleic acids, neurotransmitters, hormones, and phospholipids. S-Adenosylhomocysteine, a byproduct of these reactions, is hydrolyzed to form Hcy and adenosine. This reaction actually favors the production of S-adenosylhomocysteine, although the normally rapid egress or metabolism of intracellular Hcy and adenosine allows this reaction to continue forward (۱۲). Hcy then follows one of the following two metabolic pathways:

- (') remethylation to methionine by methionine synthase using vitamin B'Y (cobalamin) as a cofactor and °- methyltetrahydrofolate as a substrate; or, alternatively, by betaine/Hcy methyltransferase in the presence of betaine (in human subjects, the latter reaction is mainly confined to the liver and kidney);
- (*) transsulfuration to cystathionine by cystathionine _- synthase, in an irreversible vitamin B7 (pyridoxal-o-phosphate)-dependent reaction; cystathionine is then degraded by cystathionase to _-ketobutyrate, ammonium, and cysteine.

Figure 1. Molecular species of homocysteine.

Physiology:

Protein Binding

In normal subjects, approximately $\checkmark \circ \%$ of total plasma Hcy is bound via a disulfide bond, to protein, primarily albumin, [bound Hcy (bHcy)], while the remaining $\checkmark \circ \%$ exists in a free unbound form [free Hcy (fHcy)] (1)

Hcy Flux

Hey production occurs in all cells as a consequence of the normal methylation process. The Hcy volume of distribution in healthy subjects was observed to be approximately ., £ L/kg, similar to that in subjects with severe renal insufficiency (\(\gamma\)). Intracellular Hcy levels rise with enhanced intracellular Hcv production and/or inhibition of intracellular metabolism. To maintain low intracellular levels of this putatively cytotoxic substance, Hcy that is not metabolized within the cell is exported to the kinetics in healthy adult humans estimate that ',' mmol of Hcy, or approximately of to \.\!\!\ of the total daily cellular production, is delivered daily to the plasma compartment (1°). Because Hey is constantly produced and exported by cells, it must also be constantly cleared for plasma levels to remain within \.\'\'.\'\' of baseline values, as they do in healthy human subjects (17).

Normal Kidneys and Hcy Metabolism

The kidney seems to be just as capable of filtering and metabolizing Hcy as it does other amino acids. Hcy has a molecular mass of 100 D (14), which is well within the

filtration range of normal glomeruli. Assuming plasma fHcy concentration of "uM and a normal GFR of '' ml/min, the daily amount of filtered Hcy would be approximately ', o mmol. As with other amino acids, there is abundant evidence that filtered Hcy is avidly reabsorbed and only minimally excreted (' umol/d, or '') in the urine ('A).

Tubular uptake mechanisms specific for Hcy have been identified. Kinetic studies of minced rat renal cortical tissue identified low-Km/high-affinity and high-Km/low-affinity homocystine uptake systems, the former shared with cystine and the dibasic amino acids arginine, ornithine, and lysine (۱۹). This finding is supported by studies in which rats and human subjects exhibited dramatically increased urinary homocystine excretion after intravenous boluses of arginine and lysine or aminoisobutyric acid (۲۰), an inhibitor of lysine, arginine, and ornithine tubular reabsorption.

Human kidneys contain the necessary Hcy-metabolizing enzymes, transsulfuration (cystathionine _-synthase and cystathionase) and remethylation (methionine synthase) enzymes in significant amounts (⁷). Compared with liver, the kidney contains more betaine.

Review of Literature

Hcy methyltransferase and less cystathionase and methionine synthase (15). However, cystathionine _-synthase gene expression has been documented in the kidney (17).