

Cardiac Autonomic Neuropathy in Non-Diabetic Patients with Chronic Kidney Disease

Thesis

Submitted for Partial Fulfillment of Master Degree In Internal Medicine

By

Mahmoud El Nemr Mohammed

(M.B.,B.Ch.)

Supervised by

Prof. Dr. Gamal El Sayed Mady

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. Maha Abd El Moneim Behairy

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain shams University

Dr. Ahmad El Sayed Yousef

Lecturer of Cardiology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2017

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Gamal El Sayed Mady**, Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Maha Abd El**Moneim Behairy, Lecturer of Internal Medicine and

Nephrology Faculty of Medicine - Ain shams University for her

sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Ahmad El Sayed Yousef**, Lecturer of Cardiology Faculty of Medicine - Ain shams University for his great help, outstanding support, active participation and guidance.

Mahmoud El Nemr Mohammed

List of Contents

Title Po	age No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	12
Review of Literature	
 Cardiac Autonomic Neuropathy (CAN) in Chron Kidney Disease (CKD) 	
 Management of Cardiac Autonomic Neuropathy 	60
Subjects and Methods	77
Results	85
Discussion	110
Summary	119
Conclusion	122
Recommendations	123
References	124
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Interpretation of autonomic function (AFT) as normal, borderline or abnot depending on the value of the parameters and score as points are given	ormal neter en in
Table (2):	Manifestation of Cardiac Autor Neuropathy.	nomic 41
Table (3):	Relation of CAN score with age therapeutic correction of CAN	73
Table (4): Table (5):	Interpretation of autonomic function as normal, borderline or abnormal	81 r left
Table (6):	ventricular mass indexed to BSA (g/m2) Comparison between the three stu groups according to demographic	udied and
Table (7):	clinical characteristics Etiology of CKD among studied pagroups	tient
Table (8):	Comparison between the three str groups according to laboratory data	udied 88
Table (9):	Comparison between the three stugroups according to ECHO	91
	to Symptoms of autonomic neuropath cases group (n=50).	ny in92
Table (11):	Comparison between the two studied graccording to symptoms of cardiac autor neuropathy	nomic
Table (12):	Comparison between the three str groups according to cardiac autom	udied iomic
Table (13):	dysfunction	coups

List of Tables cont...

Table No.	Title Page	No.
Table (14):	Relation between cardiac autonomic	
14510 (11).	dysfunction with demographic data and	
	ECHO cardiograph studied parameters	99
Table (15):	Relation between cardiac autonomic	
14610 (10)1	dysfunction with laboratory data	100
Table (16):	Relation between cardiac autonomic	
10010 (10)1	dysfunction with eGFR.	102
Table (17):	Relation between cardiac autonomic	
20020 (21)1	dysfunction with Protein / Creatinine ratio	103
Table (18):	Relation between cardiac autonomic	
_ = = = = = = = = = = = = = = = = = = =	dysfunction with Symptoms of autonomic	
	neuropathy	104
Table (19):	Comparison between the two studied groups	
, ,	according to test 1 (valsalva ratio).	106
Table (20):	Comparison between the two studied groups	
	according to test 2 (R-R interval).	107
Table (21):	Comparison between the two studied groups	
	according to test 3 (30:15 ratio).	108
Table (22):	Comparison between the two studied groups	
	according to test 4.	109

List of Figures

Fig. No.	Title P	age No.
Figure (1):	Prevalence rate ratios and 95% confide intervals for the association between	
	cardiac autonomic neuropathy (CAN) a	
	silent myocardial ischemia (MI) in	
E: (9).	studies. Modified from Vinik et al.	
Figure (2):	Electrocardiography during respirate cycles with maximal inspiration a	
	expiration used for calculation of beat	
	beat variation.	
Figure (3):	Deep breathing tests card	
E. (4)	parasymahtetic funciton	
Figure (4):	Natural progression of CAN and correlat with clinical signs and symptoms. CA	
	Cardiac autonomic neuropathy; LV: I	
	ventricle	
Figure (5):	Prevalence of nephropathy in type	2
	diabetic patients with early CAN	
Figure (6):	Stages of cardiovascular autonom	
Figure (7):	neuropathy Cumulative incidence of cardiovascu	
rigure (1).	death of the study participants according	
	the presence of cardiac autonom	_
	neuropathy (CAN).	
Figure (8):	Stages of cardiovascular autonom	
Figure (9):	neuropathy	32
rigure (9):	patients	
Figure (10):	Pathogenesis of sudomotor dysfunction.	
	Clinical features of diabetic autonom	
	neuropathy.	
	Heart rate vairability.	
Figure (13):	Prevalence of silent MI	46

List of Figures cont...

Fig.	No.	Title Page	No.
Figu	ıre (14):	Association between CAN and silent myocardial infarction.	47
Figu	ıre (15):	A. Normal QT interval B. Prolonged or abnormal QT interval	
_		Mortality rate from MI.	50
Figu	ıre (17):	Peripheral autonomic neuropathy	~ .
ъ.	(10)	symptoms.	
_		The autonomic nervous system	
_		Relation of CAN to CKD & BMI. Cumulative survival rates of the study	6
rigu	ire (20):	participants according to the presence of cardiac autonomic neuropathy (CAN).	76
Figu	ıre (21):	Symptoms of autonomic neuropathy among	10
5		non-diabetic CKD patients groups	92
Figu	ıre (22):	Relation between symptoms of autonomic neuropathy and cardiac autonomic	
Figu	ıra (23).	dysfunction. Cardiac autonomic neuropathy	94
rigu	ne (29).	dysfunctions among Non-diabetic CKD patients.	96
Figu	ıre (24):	Relation between symptoms of autonomic	
		neuropathy and autonomic dysfunction in	
		Total patients	98
		Relation between autonomic dysfunction with Hemoglobin level	101
Figu	ıre (26):	Relation between autonomic dysfunction	
	(2-)	with Total cholesterol.	101
Figu	ıre (27):	Relation between autonomic dysfunction with eGFR	102
Figu	ıre (28):	Relation between autonomic dysfunction	
		with Symptoms of cardiac autonomic neuropathy	105

List of Abbreviations

Abb.	Full term
ACEI	. Angiotensin converting enzyme inhibitors
	Atrial fibrillation
	Autonomic function tests
	. Autonomic neuropathy
	Autonomic nervous system
	Angiotensin receptor blockers
<i>BP</i>	Blood pressure
<i>bpm</i>	Beats per minute
BRR	. Baroreceptor reflex
<i>CAD</i>	Coronary artery disease
<i>CAN</i>	. Cardiac autonomic neuropathy
CKD	. Chronic kidney disease
CV	. Cardiovascular
CVD	. Cardiovascular disease
CVS	Cardiovascular system
<i>DBP</i>	Diastolic blood pressure
eGFR	. Estimated glomerular filtration rate
<i>ESRD</i>	. End Stage Renal Disease
<i>GFR</i>	. Glomerular filtration rate
GI	$.\ Gastroint estinal$
GU	. Genitourinary
HR	Heart rate
<i>HRV</i>	. Heart rate variability
HTN	. Hypertension
<i>LUTS</i>	. Lower urinary tract symptoms
LV	Left ventricle
LV	Left ventricular
<i>MI</i>	. Myocardial ischemia
PNS	$ Parts\ of\ the\ ANS-parasympathetic$

List of Abbreviations cont...

Abb.	Full term
PTH	. Parathyroid hormone
PVR	. Postvoid residual volume
QDIRT	. Quantitative direct and indirect reflex test
<i>SBP</i>	. Systolic blood pressure
SMI	. Silent myocardial ischemia
SNS	. Sympathetic Nervous System

Abstract

There were no significant correlation between type of cardiac autonomic dysfunction & demographic data. Most of the patients were males with mean age 44.78 ± 13.11 years.

There were no significant correlation between type of cardiac autonomic dysfunction & echocardiography.

There were no significant correlation between types of autonomic dysfunction regarding laboratory data, except for definite parasympathetic dysfunction which has a significant correlation with hemoglobin (anemia) & cholesterol level (hypercholesterolemia).

There were no significant correlation between types of cardiac autonomic dysfunction & decrease GFR, but the lowest GFR were detected in definite parasympathetic.

There was no significant correlation between types of CAN & protein / creatinine ratio.

Keywords: Sympathetic Nervous System- Silent myocardial ischemia-Systolic blood pressure- Parathyroid hormone

Abstract

INTRODUCTION

Vardiovascular autonomic neuropathy (CAN) is associated with high risk of sudden cardiac death. CAN is been diagnosed based on the early symptoms of neuropathy and autonomic dysfunction. These symptoms may include orthostatic dizziness, gastrointestinal (GI) and genitourinary (GU) symptoms, and hypoglycemia unawareness or unresponsiveness (Vinik and Ziegler, 2007).

CAN is preceded by autonomic dysfunction. The process of aging is a factor which causes autonomic decline, which in turn leads to autonomic neuropathy. The earlier the autonomic dysfunction is detected, the greater the number of therapy options. Advanced autonomic dysfunction may be more difficult to treat. In other words, it is easier to correct early stage autonomic dysfunction compared than advanced-stage autonomic neuropathic damage (Vinik and Ziegler, 2007).

The main function of the autonomic nervous system (ANS) is to maintain homeostasis, regardless of the conditions. The two main branches of the ANS, the parasympathetic and the sympathetic, can dynamically adjust their input to maintain homeostasis and apparent normal even in the face of degraded end-organ function. Often these ANS adjustments result in autonomic imbalance and begin to affect other systems within the body, including the cardiovascular system. This is the basis for the constellation of symptoms known to degrade quality of life in

many chronic diseases. By the time symptoms present as a result of end-organ dysfunction or failure, the ANS has been out of balance for considerably longer (Vinik and Ziegler, 2007).

Unfortunately, early signs of autonomic dysfunction are often not recognized due to two main reasons. First, the current understanding of the effects of the ANS and its interaction with other physiological systems is incomplete. Second, a reliable clinical tool to measure and monitor the ANS did not exist until recently, when the ability to measure both ANS branches simultaneously and independently was developed commercially (ANSAR Medical Technologies, Inc., Philadelphia, PA). Prior to this, autonomic neuropathy could be clinically diagnosed (orthostatic hypotension, gastro-paresis, etc.) only at an advanced stage with dramatic symptoms. At this stage, it is usually much too late for anything but treatment of the symptoms. With simultaneous, independent measures of both ANS branches, these patients can be identified even when they are still asymptomatic, or mildly symptomatic, a fairly common situation usually accompanied by fatigue, light-headedness, palpitations, intractable hypertension, etc. Therapeutic intervention seems to improve outcomes by slowing or halting autonomic decline and the associated disease progression (Vinik et al., 2007).

The history of non-invasive ANS monitoring in clinical practice is confusing. Traditionally, it has been based only on measures of heart rate variability (HRV). Measures of HRV

defined in the 1996 Circulation standards article, 3 are mixed or incomplete measures of the parasympathetic and sympathetic. This is not surprising regardless of how much it is dissected. But, one independent measure of a system (the ANS) that contains two components: the parasympathetic and the sympathetic. From a mathematical perspective, one measure is insufficient to fully characterize a two-component system. If one measure changes, it is impossible to determine which component changed without making assumptions or without additional information. This has resulted in a very low clinical acceptance rate for this method. Except in extreme cases, HRV alone provides no additional information. The use of HRV alone merely indicates the obvious: that the patient's ANS is functioning (Task Force of the European Society of Cardiology, 1996).

AIM OF THE WORK

The aim of the work is to evaluate the pattern of cardiac autonomic neuropathy (CAN) in non-diabetic chronic kidney disease (CKD) patients not on dialysis.