

Ain Shams University, Faculty of Engineering, Electrical Power and Machines Department

Allocation of FACTS Devices Using New Optimization Techniques

By

Mahmoud Abdallah Attia

B.Sc. Electrical Engineering, Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Electrical Engineering

Supervised by

Prof. Dr. / Metwally Awad El-Sharkawy

Faculty of Engineering, Ain Shams University

Prof. Dr. / Almoataz Youssef Abdelaziz

Faculty of Engineering, Ain Shams University

Table of content

List of Figures	V
List of Tables	VII
List of Abbreviations	VIII
List of Symbols	IX
Abstract	x
Statement	XII
Curriculum vitae	XIII
Acknowledgements	XIV
CHAPTER 1	11
INTRODUCTION	11
1.1. FACTS	11
1.1.1. Introduction	11
1.1.2. Shunt devices	13
1.1.3. Series compensation	14
1.1.3.1. Thyristor-controlled series capacitors	15
1.1.3.2. TCSC (Thyristor-controlled series compensators)	18
1.1.4. Shunt and series devices	20
1.1.4.1. Unified power flow controller (UPFC)	20
1.2. Goals of optimal location of FACTS devices	21
1.3. Thesis objectives	22
1.4. Thesis outlines	22

CHAPTER 2	23
LITERATURE REVIEW	23
2.1. Introduction	23
2.2. Modeling of FACTS Devices	23
2.3. Literature survey on optimal allocation of FACTS devices in power systems	26
2.3.1. Using GA	26
2.3.2. Using particle swarm optimization (PSO)	29
2.3.3. Using GA and PSO	30
2.3.4. Using bacterial swarming algorithm	31
2.3.5. Using sensitivity indices	31
2.3.6. Using Mixed-Integer Programming	33
2.4. General comments	34
CHAPTER 3	35
THE PROPOSED OPTIMIZATION TECHNIQUE	35
3.1. Brief Survey of some optimization techniques	35
3.1.1. Introduction	35
3.1.2. Linear programming (LP) method	36
3.1.3. Quadratic programming (QP) method	36
3.1.4. Nonlinear programming (NLP) method	37
3.1.5. Interior point (IP) method	38
3.1.6. Artificial intelligence (AI) methods	38
3.1.6.1. Artificial neural network (ANN) method	39
3.1.6.2. Fuzzy logic (FL) method	39
3.1.6.3. Genetic algorithm (GA) method	40
3.1.6.4. Ant colony optimization (ACO) method	41
3.1.6.5. Particle swarm optimization (PSO) method	41
3.2. Which techniques will be used in this thesis?	44
3.2.1. Introduction	44
3.2.2. AI	44

3.2.2.1. Advantages of GA over other traditional optimization techniques	44
3.2.2.2. Disadvantages of GA	45
3.2.2.3. Advantages of PSO compared to other evolutionary computational	
techniques	46
3.2.2.4. Disadvantages of PSO	46
3.2.2.5. Performance comparisons between GA and PSO	47
3.3. Which FACTS device type is used?	48
3.4. The proposed optimization technique	48
3.4.1. Introduction	48
3.4.2. First technique	49
3.4.3. Second technique	49
3.4.4. AC Formulation of the system	52
3.4.5. Power flow in Matpower	55
3.4.6. Modified Matpower model of each system	56
CHAPTER 4	57
APPLICATION OF THE PROPOSED APPROACH TO STANDA	ARD
TEST POWER SYSTEMS	57
4.1. Introduction	57
4.2. IEEE 9 bus system	57
4.2.1. 9-bus system results	59
4.2.1.1. System study without FACTs devices after 25% increasing in loading	59
4.2.1.2. First technique	62
4.2.1.3. Second Technique	
1	68
4.2.1.4. Comparison of the proposed method with [12]	68 77
4.2.1.4. Comparison of the proposed method with [12] 4.3. IEEE 30 bus system	
4.3. IEEE 30 bus system 4.3.1. Results of considering the range of TCSC from -30% to -70% of line react	77 82
4.3. IEEE 30 bus system	77 82
 4.3. IEEE 30 bus system 4.3.1. Results of considering the range of TCSC from -30% to -70% of line react (capacitive range) 4.3.2. Results of considering the range of TCSC from (-0.8 X_L to 0.2 X_L) 	77 82 ance
4.3. IEEE 30 bus system 4.3.1. Results of considering the range of TCSC from -30% to -70% of line react (capacitive range)	77 82 ance 85

CHAPTER 5	140
CONCLUSIONS AND FUTURE WORK	140
5.1. Conculusions	140
5.2. Future work	141
References	142

List of Figures

Figure 1.1 Operational limits of transmission lines for different voltage levels	13
Figure 1.2 Series compensation (series capacitor) (source ABB)	15
Figure 1.3 Principle setup and operational diagram of a thyristor Controlled	
Series Compensation	16
Figure 1.4 Thyristor-controlled series capacitors (Source: ABB)	17
Figure 1.5 Simple diagram of TCSC device	18
Figure 1.6 Impedance Vs firing angle characteristic curve	19
Figure 1.7 Principle configuration of an UPFC	21
Figure 2.1 Models of the FACTS devices. (a) TCSC. (b) TCPST. (c) TCVR.	
(d) SVC.	25
Figure 2.2 TCSC model	26
Figure 3.1 Flow chart of the proposed optimization technique	51
Figure 3.2 branch model [48]	53
Figure 4.1 Modified IEEE 9- bus system	58
Figure 4.2 Voltage profile of the 9- bus system after and before FACTS insert	tion
	74
Figure 4.3 Delta of the 9- bus system after and before FACTS insertion	74
Figure 4.4 Power flow of the 9- bus system after and before FACTS insertion	75
Figure 4.5 Reactive power flow of the 9- bus system after and before FACTS	
insertion	75
Figure 4.6 Total active loss of the 9- bus system after and before FACTS	
insertion	76
Figure 4.7 Total reactive loss of the 9- bus system after and before FACTS	
insertion	76
Figure 4.8 P% from rated power of line of the 9- bus system after and before	
FACTS insertion	77
Figure 4.9 Total loss comparison of the 9- bus system	79
Figure 4.10 Total reactive loss comparison of the 9- bus system	80
Figure 4.11 Voltage profile comparison of the 9- bus system	80
Figure 4.12 Power flow comparison of the 9- bus system	81
Figure 4.13 P% from rated power of line comparison of the 9- bus system	81
Figure 4.14 IEEE 30- bus system	84
Figure 4.15 P% from line 6-8 rated - first range	102
Figure 4.16 V_{min} - first range	102

Figure 4.17 Total active loss - first range	103
Figure 4.18 p% from line 6-8 rated power - second range	120
Figure 4.19 V _{min} - second range	120
Figure 4.20 Total active loss - second range	121
Figure 4.21 P% from line 6-8 rated power - min. number of devices	137
Figure 4.22 Vmin - min. number of devices	138
Figure 4.23 Total active loss - min. number of devices	138
Figure 4.24 TCSC reactance - min. number of devices	139

List of Tables

Table 3-1 Method of optimization application	43
Table 4-1 Power flow without FACTS of the 9-bus system	60
Table 4-2 Voltage profile without FACTS of the 9-bus system	61
Table 4-3 Summary of the system results without FACTS of the 9-bus system	62
Table 4-4 Optimal location of the TCSCs found -first technique for the 9- bus system	
Table 4-5 Power flow with TCSC of the 9- bus system – first technique	65
Table 4-6 Voltage profile with TCSC of the 9- bus system – first technique	66
Table 4-7 System summary with TCSC of the 9- bus system – first technique	67
Table 4-8 Optimal locations of the TCSCs found by the second technique for the 9-b	
system	69
Table 4-9 Power flow with TCSC of the 9- bus system – second technique	70
Table 4-10 Voltage profile with TCSC of the 9– bus system – second technique	71
Table 4-11 System summary with TCSC of the 9- bus system – second technique	72
Table 4-12 Comparison between the proposed method and [12]	78
Table 4-13 TCSC reactance added of the 30- bus system – first range	86
Table 4-14 %p from rated before and after TCSC insertion of the 30- bus system – f	
range	88
Table 4-15 Voltage profile before and after TCSC insertion of the 30- bus system – f	
range	90
Table 4-16 complete power flow without TCSC - 30 bus system	93
Table 4-17 complete power flow after TCSC insertion by first technique -first range	
bus system	95
Table 4-18 complete power flow after TCSC insertion second technique -first range	
bus system	98
Table 4-19 System summary before and after TCSC insertion of the 30- bus system -	_
first range	101
Table 4-20 TCSC reactance added– second range of the 30- bus system	104
Table 4-21 Voltage profile after and before TCSC – second range of the 30- bus syst	em
	107
Table 4-22 %p from rated power of line before and after TCSC - second range of the	30-
bus system	109
Table 4-23 complete power flow without TCSC 30 bus system	111
Table 4-24 complete power flow after TCSC insertion first technique -second range	30
bus system	114
Table 4-25 complete power flow after TCSC insertion second technique -second range	ge
30 bus system	116
Table 4-26 Summary of second range results of the 30- bus system	118
Table 4-27 %p from rated comparison between TCSC ranges of the 30- bus system	122
Table 4-28 System summary comparison between TCSC ranges of 30- bus system	124
Table 4-29 X added with minimum number of devices for the 30- bus system	126
Table 4-30 P% from rated power of line with minimum devices for 30- bus system	129
Table 4-31 Complete power flow min voltage (V>0.95) -30 bus system	131
Table 4-32 Complete power flow min voltage (V>0.9) -30 bus system	134
Table 4-33 Final summary of the 30- bus system	136
- · · · · · · · · · · · · · · · · · · ·	

List of Abbreviations

o AI : Artificial intelligence

o BSA : Bacterial swarming algorithm

o FACTS : Flexible AC transmission systems

o GA : Genetic algorithm

o HVDC : High voltage direct current

o IP : Interior point

o LP : Linear programming

o Max : maximum
o Min : minimum

o NLP : Nonlinear programming

o NR : Newton Raphson

OPF : Optimal power flow

o PSO : Partical swarm optimization

o QP : Quadratic programming

o STATCOM : Static Synchronous compensator

o SVC : Static VAr compensator

o TCPST :Thyristor controlled phase shifting transformer

o TCVR : Thyristor controlled voltage regulator

o TCSC : Thyristor-controlled series compensators

o TTC : Total transfer capability

o UPFC : Unified power flow controller

List of Symbols

 $\circ \theta_p$: phase shifting angle

Delta : power angleP : power flow

 \circ P_d : power demand

o P_g : generated power

 \circ P_{loss} : power loss

o %p : power flow from line rated power

o Q : reactive power flow

o Q_d : reactive power demand

o Q_g : generated reactive power

o Q_{loss} : reactive power loss

o Q_s : reactive power injected or absorbed by svc

o S : complex power

 \circ T_v : Tab change transformer turns ratio

o V : voltage

 \circ X_{added} : TCSC reactance added to line

 \circ X_{old} : line reactance without FACTs

 \circ X_1 : line reactance

Abstract

The deregulated power systems suffer from congestion management problems. Also they cannot fully utilize transmission lines due to excessive power loss that it could cause. FACTS devices such as thyristor-controlled series compensators (TCSC) can, by controlling the power flows in the network, help reducing the flows in heavily loaded lines. Also they can minimize the power loss of the systems. However, because of the considerable costs of FACTS devices, it is important to minimize their number and obtain their optimal locations in the system.

Several research works are carried out to solve the optimal location problem of the TCSC. Optimization techniques applied in most of these works can not be accepted as general optimization techniques as they used a fixed pre-specified number of FACTS devices, but it is better to include number of devices in optimization strategy. Some other works did not select the proper type or the proper working range of FACTS devices used in the optimization problem.

This research is carried out to find the optimal location of thyristor-controlled series compensators (TCSC) in the power system to improve the loadability of the lines and minimize the total loss. Also this research aims to find the optimal number of devices and their optimal ratings by using genetic algorithm with taking into consideration the thermal and voltage limits. Examination of the proposed approch is carried out in healthy IEEE 9-bus system and in modified IEEE 30-bus system with one line outage and loading of one bus increased by 50%.

Results show that TCSC optimal location can minimize the total losses with thermal and voltage constraints not violated. Also optimal location of TCSC can increase system stability margin by increasing minimum voltage of the system. Optimal location can also return system to the constraints limit after it gets out of constraints due to lines outage. Finally proper selection of FACTS values and accurate selection of the available locations are the main important factors of using FACTS to improve system stability.

Statement

This thesis is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Mahmoud Abdallah Attia
Signature:
Date:

Curriculum vitae

Personal Information

Name : Mahmoud Abdallah Attia;

Gender : Male;Country of Nationality : Egypt;

Date of BirthMilitary Service StatusExempted;

Education

First University Degree : B.Sc. Electrical Engineering;

University : Ain Shams University, Cairo, Egypt;

Graduation Date : June, 2005;

• Graduation Project : Design of interior wiring and distribution

networks for a large housing complex;

Project grade : Distinction;

■ **B.Sc. Grade/ Rank /** % : Distinction / 2nd / 93.93 %:

■ Cumulative Grade/ Rank / : Distinction with honour / 4th / 89.17 %:

%

Current Job

Job Title : Teaching Assistant;

Employer : Faculty of Engineering, Ain Shams

University, Egypt;

Contact Information

Address : 78 Saab Saleh Street, Eastern Ain Shams,

Cairo, Egypt – Code: 11311;

■ **Mobile** : (+2012)4624428;

■ E-Mail : Mahmoud_Abdallah2005@yahoo.com

Acknowledgements

I am grateful for the help of my supervisors Prof. Dr. Metwally El Sharkawy and Prof. Dr. Al-Motaz Yousef. Also I am so grateful for Dr. Ray Zimmerman, Senior Research Associate, Cornell University and for Eng. Ahmed Zaki researcher assistant, computer department for their help and advice in programming. Finally many thanks for my Father, mother, brother, sister and my wife for their advices.