In Vitro Evaluation of the Remineralization Effect of Two Types of Natural Agents on Artificial Enamel Caries Lesions

Thesis submitted to

Faculty of Dentistry - Ain Shams University

In partial fulfillment of the requirements for the master's degree in Pediatric Dentistry

By

Dina Darwish Abdel Moneim

 $B.D.S \; Faculty \; of \; Dentistry- \; Ain \; Shams \; University \; 2010$

Faculty of Dentistry

Ain-Shams University

2017

Supervisors

Prof. Nadia Ezz Eldin Metwalli

Professor of Pediatric Dentistry and Dental Public Health
Faculty of Dentistry
Ain Shams University

Dr. Amira Saad Badran

Lecturer of Pediatric Dentistry and Dental Public Health
Faculty of Dentistry
Ain Shams University

<u> Acknowledgement</u>

I would like to express my deep gratitude to **Dr. Nadia Ezz Eldein Metwalli,** Professor, Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Ain Shams University for her professional guidance and valuable support. It was an honor to work under her supervision.

I am particularly beholden for the assistance given by **Dr. Amira Saad Badran,** Lecturer, Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Ain Shams University, for her constructive suggestions and her patience during the development of this research. Her meticulous reading and her willingness to give her time so generously are much appreciated.

I also wish to thank **Dr. Khalid Hadad**, Lecturer, Oral Biology Faculty of Dentistry, Ain Shams University, for his explaining about the scanning electron microscope so diligently, and **Dr. Yasmine El Qabany** for her effort in the microhardness testing at the National Institute of Research. She showed up a lot of care and help throughout this research. Special thanks to the staff members of Scanning Electron Microscope at The Egyptian Mineral Resources Authority Central Laboratories Sector for their valuable technical support.

I would like to express my deepest thanks to my dear professors, colleagues and staff members of Pediatric Dentistry, Dental Public Health Department, Faculty of Dentistry, Ain Shams University for their great help and support.

To the soul of my Mother She always empowered me by her trust in God, patience and insistence. I just hope I have made you proud.

My Father I couldn't achieve anything in my life without your guidance and love.

My Sister, my life partner no word could be enough to thank you.

Finally my soul mate Manar Galal, thank you for being in my life.

List of Contents

Content	page
List of tables	I
List of figures	Ш
List of abbreviations	IX
Introduction	1
Review of literature	3
Aim of the study	27
Materials and Methods	28
Results	50
Discussion	82
Summary	91
Conclusions	93
Recommendations	94
References	95
Arabic summary	

List of tables

	Table	Page
Table .1	Materials used in the study	28-29
Table .2	Corresponding weight of chemicals used in demineralizing solution preparation	41
Table .3	Corresponding weight of chemicals used in remineralizing solution preparation	45
Table .4	Mean and standard deviation (SD) for microhardness for different subgroups	50
Table .5	Median, Maximum, Minimum and Range for % of change in microhardness for different subgroups	
Table .6	Mean and standard deviation (SD) for Calcium (Ca) wt. % for different subgroups	54
Table .7	Median, Maximum, Minimum and Range for % of change in Calcium (Ca) wt.% for different subgroups	57

Table .8	Mean and standard deviation (SD) for Phosphorus (P) wt.% for different subgroups	
Table .9	Median, Maximum, Minimum and Range for % of change in Phosphorus (P) wt. % for different subgroups	61
Table .10	Mean and standard deviation (SD) for Ca/P Ratio for different subgroups	62
Table .11	Median, Maximum, Minimum and Range for % of change in Ca/P Ratio for different subgroups	64
Table .12	Mean and standard deviation (SD) for Carbon (C) wt.% for different subgroups	
Table .13	Median, Maximum, Minimum and Range for % of change in Carbon (C) wt.% for different subgroups	68

List of figures

	Figure	Page
Figure .1	Scanning electron microscope micrograph of the cross section of enamel showing. A: Enamel Rod, B: Interrod enamel. C: Rod sheath	5
Figure .2	Scanning electron microscope micrograph of the longitudinal section of enamel showing. A: Enamel rod, B: Interrod enamel	5
Figure .3	Gum Arabic tree	20
Figure .4	Removal of the root portion	33
Figure .5	A cylindrical mould	33
Figure .6	Acrostone (acrylic resin powder & liquid)	34
Figure .7	Steps of fabrication of the sample block	34
Figure .8	Steps of 4*4 window formation	35
Figure .9	Samples grouping and stages of evaluation	36
Figure .10	Microhardness testing machine	37
Figure .11	Sand papers (600-1200)	38

Figure .12	Built in scale to measure the diagonal dimensions of the indentation	39
Figure .13	Scanning Electron Microscope	40
Figure .14	Sample holder	40
Figure .15	Transferring plate	40
Figure .16	Sensitive balance	42
Figure .17	Chemicals used in demineralizing solution preparation	42
Figure .18	Deionized water	
Figure .19	1 Liter volumetric flask to adjust the prepared volume	
Figure .20	Ultrasonic device	43
Figure .21	pH meter	43
Figure .22	Pyrex glass container	44
Figure .23	Chemicals used in remineralizing solution preparation	46
Figure .24	Gum Arabic	46
Figure .25	GSE	47

Figure .26		
	NaF powder	47
Figure .27	PH cycle	
Figure .28	Histogram showing the mean microhardness for different remineralization for each subgroup	51
Figure .29	Histogram showing the mean microhardness for different subgroups	52
Figure .30	Histogram showing the mean Calcium (Ca) wt. % for different remineralization for each subgroup	55
Figure .31	Histogram showing the mean Calcium (Ca) wt. % for different subgroups	56
Figure .32	Histogram showing the mean Phosphorus (P) wt. % for different remineralization for each subgroup	59
Figure .33	Histogram showing the mean Phosphorus (P) wt. % for different subgroups	60
Figure .34	Histogram showing the mean Ca/P Ratio for different remineralization for each subgroup	63
Figure .35	Histogram showing the mean Ca/P Ratio for different subgroups	63
Figure .36	Histogram showing the mean Carbon (C) wt. % for different remineralization for each subgroup	66

Figure .37	Histogram showing the mean Carbon (C) wt. % for different subgroups	67
Figure .38	(A, B) Scanning electron micrograph at base line showing intact prismless enamel surface (1000x)	71
Figure .39	A higher magnification of previous figure showing prismless surface of enamel (3000x)	71
Figure .40	Scanning electron micrograph at base line showing numerous shallow concavities of enamel rod ends (blue arrows) with prismless areas (white arrow) (3000x)	72
Figure .41	(A) Scanning electron micrograph showing appearance of multiple enamel porosities (arrow), (B) homogenous and dark areas of enamel surface (circle) (600 x, 1000x)	
Figure .42	A higher magnification of the previous figure shows disappearance of central core of enamel rod ends (porosities) (3000x)	
Figure .43	Scanning electron micrograph showing apparently wide areas of exposed enamel subsurface (600x)and homogenous dark areas of enamel (circle)	73
Figure .44	A: Scanning electron micrograph showing surface precipitate may represent crystal formation, B, C: disappearance of enamel porosities and dark areas with smoother surface (600x, 1000x)	73
Figure .45	(A, B) Scanning electron micrograph at base	74

	line showing intact prismless enamel surface (1000x)	
Figure .46	(A) Scanning electron micrograph showing intact enamel surface (1000x), (B) A higher magnification showing the shallow concavities of enamel rod ends (3000x) (arrow)	74
Figure .47	(A) Scanning electron micrograph showing apparently wide areas of exposed enamel subsurface (600x),(B) and homogenous dark areas of enamel (circle)	75
Figure .48	A: Scanning electron micrograph showing apparently wide areas of exposed enamel subsurface (1000x)and homogenous dark areas of enamel (circle).B: A higher magnification showing irregular enamel surface with type 1 etching (white arrow) and type 2 etching (blue arrow)	75
Figure .49	Scanning electron micrograph showing surface precipitate may represent new crystal formation	76
Figure .50	(A, B) Scanning electron micrograph showing the same features of demineralized surface	76
Figure .51	(A, B) Scanning electron micrograph at base line showing intact prismless enamel surface (600 x)	77
Figure .52	(A) Scanning electron micrograph showing apparently wide areas of exposed enamel subsurface (600x).(B) A higher magnification of the previous figure showing irregular subsurface enamel layer with deep depression and defined fish scale appearance	77

Figure .53	Scanning electron micrograph showing appearance of multiple enamel porosities	78
Figure .54	(A, B, C) Scanning electron micrograph showing a slightly less irregular enamel surface with less enamel porosities and dark areas	
Figure .55	(A, B) Scanning electron micrograph at base line showing intact prismless enamel surface (1000x)	79
Figure .56	A higher magnification of the previous figure shows the intact prismless enamel surface (3000x)	
Figure .57	(A,B) scanning electron micrograph showing apparently wide areas of exposed enamel subsurface along with intact prismless enamel (600 x)	
Figure .58	Scanning electron micrograph showing apparently wide areas of exposed enamel subsurface with different etching pattern along with intact prismless enamel (1000x)	
Figure .59	 (A) Scanning electron micrograph showing the same feature of the demineralized enamel, (B) Showing a slightly less irregular surface with surface rebuilding 	81

List of Abbreviations

Word	Abbreviation	
Atomic force microscopy	AFM	
Calcium	Ca	
Calcium fluoride	CaF ₂	
Carbon	С	
Carboxylate ion	COO -	
Casein phosphopeptides	ССР	
Casein phosphopeptides-	CCP-ACP	
amorphous calcium phosphate	CCI-ACI	
Casein phosphopeptides –		
amorphous calcium fluoride	CPP-ACFP	
phosphate		
Citric acid solutions	CAS	
Deionized water	DDW	
Enamel surface microhardness	ESMH	
Grape seed extract	GSE	
Grape seed proanthocyanidins	CCDE	
extract	GSPE	
Gram	gm	
Gum Arabic	GA	
Highly esterified pectin	HP	
Hydrogen ion	H ⁺	

IX

Hydroxyapatite	НАР	
Initial enamel caries lesions	IECL	
Microhardness	МН	
Microliter	μL	
Milliliter	ML	
Mole	M	
Millimole	mM	
Minimum intervention dentistry	MID	
Phosphorus	P	
Proanthocyanidins	PAs	
Propylene glycol alginate	PGA	
Scanning electron microscope-		
Energy Dispersive X-ray	SEM-EDX	
Analyses		
Sodium fluoride	NaF	
The American food and drug	EDA	
administration	FDA	
The American National Institutes	es NIH	
of Health		
Vickers hardness number	VHN	