

FACULTY OF ENGINEERING

Design and Production Engineering

Multi objective optimization of a green supply chain model

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Nouran Ibrahim Mohamed Ibrahim

Bachelor of Science in Mechanical Engineering
(Manufacturing Engineering Program)
Faculty of Engineering, Ain Shams, 2012

Supervised By

Prof. Dr.Amin Kaml El-Kharbotly

Dr. Yomna Sadek

Cairo - (2017)

FACULTY OF ENGINEERING

Design and Production

Multi objective optimization of a green supply chain model.

by

Nouran Ibrahim Mohamed Ibrahim

Bachelor of Science in Mechanical Engineering
(Design and Production Engineering)
Faculty of Engineering, Ain Shams, 2012

Examiners' Committee

Signature

Date: 20/9/2017

Researcher Data

Name : Nouran Ibrahim Mohamed Ibrahim

Date of birth : 02/07/1990

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Manufacturing Engineering

University issued the degree : Ain Shams University

Date of issued degree : 2012

Current job : Teaching Assistant in the UFE

Summary

The globe is now-a-days concerned with the impact of environmentally polluting industries which may affect drastically the health of people. The social aspects are also of a great concern to achieve stability in societies. As a result, developed countries have set firm regulations for industrial activities to minimize environmental and social damage due to polluting activities. Due to these facts, various researches in the industrial fields are directed in an attempt to reach industrial solutions that besides maximizing the profit; it maintains acceptable environmental and social levels.

In this research, a multi echelon multi product single facility reversed paper manufacturing supply chain is modelled and optimized for sustainability. The behaviour and performance of the supply chain is studied for several parameters and different supply chain designs.

The proposed supply chain in the present work is assumed to be of a reversed type where waste paper is collected from the market from different sources. The quantities of needed waste paper are used for paper manufacturing and the excess quantities may be sold to other facilities with profit. Unrecyclable waste materials are spent either by landfilling or incineration. The manufacturing facility produces three different types of paper of different qualities. The paper is manufactured either entirely from virgin pulp or entirely from recycled waste paper pulp or of a mixture of both.

The study of supply chain sustainability considers marginal profit, environmental impact and social aspects as represented by the number of generated job opportunities. The present study considers the optimization of the marginal profit as a single objective after which the obtained results are compared to that obtained from optimizing for sustainability (i.e. marginal profit, environmental impact and social aspect). The research is extended to study the effect of a number of supply chain drivers such as plant capacity, material mix on supply chain performance. Each of these drivers can be developed and managed to emphasize responsiveness or efficiency depending on the business requirements.

Linear programming was used to optimize the supply chain for maximum marginal profit. The linear programming problem was solved using excel solver. Multi-objective optimization for sustainability was made using NIMBUS software which uses interactive optimization.

It was found that the production capacity has an obvious effect on the three objectives subject to optimization. As the production capacity increases the marginal profit increases showing net profit at certain breakeven capacity which depends on the waste paper cost. The higher the waste paper cost the higher the breakeven capacity.

The product mix from the three types of paper (types A, B, and C) at any production capacity depended mainly on the waste paper cost introduced as a ratio of virgin pulp cost. It was found that in profit optimization, the higher the waste paper cost the higher the tendency for the manufacturing of high quality paper type A as the recycling becomes less profitable. On the other hand, in case of a supply chain that is optimized for sustainably, the opposite takes place as the product mix with increased waste paper cost, the supply chain has to keep producing from low quality paper type C. This is because that in this case, part of profit should be sacrificed to maintain good environmental and social aspects which recommend recycling.

The capacity of the facility plays an important role in determining the product mix. In case of single objective, at small limited capacity the facility has to produce from type C as this type gives the higher marginal profit. As capacity increases other types of papers are introduced according to marginal profit to gain profit limited by the maximum demand on each type. At high waste paper cost, because the marginal profit of type A may be higher that of C, the facility will prefer to produce from type A even at small capacities. In multi-objective, although the marginal profit is less, however the improvement in environmental impact and social aspects are high enough to encourage sacrificing part of the profit.

Key words:

Closed loop supply chain - Green supply chain-Multi objective optimization-Sustainability-Paper Recycling- Linear programming – Nimbus.

Acknowledgment

I would like to express my gratitude to my advisor Prof.Dr. Amin Elkharboutly for his continues guidance and motivation through my masters research as I learned a lot from his immense knowledge and experience. Also, I would thank my advisor Dr. Yomna Sadek for being able to follow up with me and helping me to correct experimental errors in my research. Finally, Special thanks to my Mother and Father for their continuous support through the whole duration of my masters study.

Contents

CHAPTER 1:Introduction	16
CHAPTER 2:Pulp and Paper industry	18
2.1 Paper manufacturing process	19
2.1.1 Virgin pulp paper product	19
2.1.2 Recovered pulp production	21
2.2 Paper recycling advantage, disadvantages and regulations	22
2.3 Paper industry in Egypt	23
CHAPTER 3:Literature review	24
3.1 Introduction	24
3.2 Optimization Techniques	25
3.2.1 Single Objective optimization techniques	26
3.2.2 Multi-Objective optimization	27
3.3 Life cycle assessment	43
3.3.1 LCA methodology and procedure	44
3.3.2 LCA approaches	46
3.3.3 LCA tools	49
3.3.4 LCA database	49
3.3.5 Research and applications	50
3.4 Findings and Research objectives	51
CHAPTER 4:Proposed Supply chain Model and Applied optimization techni	ques.53
4.1 Introduction	53
4.2 Mathematical Model	53
4.2.1 Model description	53
4.2.2 Model assumptions	55
4.2.3 Objectives of the model	56
4.2.4 Constraints	61
4.3 Procedure of the solution and Optimization Techniques	63
4.4 Computerization of the model	64

CHAPTER 5: Results and discussion	5
5.1 Introduction6	5
5.2 Design of experiments6	5
5.3 Study the product mix for optimal SC economy (marginal profit) 6	9
5.3.1 Product mix for optimal SC economy (total marginal profit) at different waste paper costs and plant capacities	0
5.3.2 Breakeven analysis of SC at different waste paper costs and plant capacities	
5.3.3 SC environmental impact for optimal SC economy at different plant capacities	2
5.3.4 SC social impact for optimal SC economy at different plant capacities	7
5.4 Study of product mix for optimal SC sustainability (marginal profit, environmental and social impacts)	9
5.4.1 Marginal profit of economically and sustainably optimized SC at different plant capacities	0
5.4.2 Environmental impact for economically and sustainably optimized SC at different plant capacities84	
5.4.3 Social impact for economically and sustainably optimized SC at different plant capacities8	7
_5.5 Effect of waste paper cost on product mix for sustainability optimized capacitated SC	2
CHAPTER 6:Conclusion	7
6.1 Introduction99	7
6.2 Conclusions	7
6.3 Future work	9
References	

List of Figures

Figure 2-1 Paper manufacturing Processes. Source [2]	.18
Figure 2-2 Wood preparation. Source [3]	.19
Figure 3-1: Closed loop supply chain. Source [7]	.24
Figure 3-2: Main features of WWW-NIMBUS in the eyes of the user. [33]	.37
Figure 3-3: User interface IND NIMBUS	.37
Figure 3-4 Problem description in IND NIMBUS	.38
Figure 3-5 Neutral Compromise Solution. Source [35]	.38
Figure 3-6 the nadir and worst objective vectors. Source [37]	.39
Figure 3-7: functions Classification in IND NIMBUS	.40
Figure 3-8: Specifying classification parameters in WWW-NIMBUS	.41
Figure 3-9: Methodological framework for life cycle assessment (LCA) [45]	.44
Figure 3-10 Different LCA tools. Source [45]	.46
Figure 3-11: Eco-Indicator methodology.Source [47]	.48
Figure 3-12: Life cycle assessment calculation procedure.	.49
Figure 4-1: Closed loop supply chain network for paper industry	.53
Figure 4-2: Solution procedure flow chart	.63
Figure 5-1: Effect of production capacity on total marginal profit at different waste	
paper costs for marginal profit optimization	.70
Figure 5-2 Effect of changing the waste paper cost (as percentage of virgin pulp cost	st)
on the marginal profit at different production capacities	.71
Figure 5-3: Breakeven capacity for different waste paper costs for different	
production capacities.	.72
Figure 5-4: Illustration for net profit, net loss and marginal profit zones at Cw= 5%	of
the virgin pulp cost	.72
Figure 5-5: the effect of production capacity on the environmental impact at differe	nt
waste paper costs in case of marginal profit optimization	.73
Figure 5-6: The effect of the Cap _F on the environmental impacts and paper quantities	es
at Cw= [5%-8%-10%] of the virgin pulp cost	
Figure 5-7: Optimal quantities produced from different paper grades at Cw=5% at	
different production capacities through profit optimization.	.75
Figure 5-8: Effect of the Cap _F on the environmental impacts and paper quantities a	ıt
Cw= 15%-20% of the virgin pulp cost.	.76
Figure 5-9: Quantities produced from different paper grades at waste paper cost=15	5%
at different production capacities through profit optimization.	.77
Figure 5-10: The effect of the production capacity on the number of job opportuniti	ies
and waste paper quantities at Cw=5%,8% and 10% of the virgin pulp cost	.78
Figure 5-11: Effect of the production capacity on the number of job opportunities a	nd
waste paper quantities at Cw=15% and 20% of the virgin pulp cost	
Figure 5-12: Comparison between the number of variable job opportunities at waste	e
cost =5% and waste cost =15 % in case of profit optimization	.79

Figure 5-13: The effect of the production capacity on the marginal Profit for both of
the marginal profit optimization and the Multi-objective optimization solutions at
waste paper cost equal to 5 % of the virgin pulp cost80
Figure 5-14:A comparison between quantities produced of different paper grades for
marginal profit optimization fig (a) and for the multi objective optimization fig (b) at
waste paper cost =5% of the virgin pulp cost81
Figure 5-15: Quantities produced from different paper grades at waste paper cost=5%
at different production capacities through sustainability optimization82
Figure 5-16: The effect of the production capacity on the marginal Profit for both of
the marginal profit optimization and the Multi-objective optimization solutions at
Cw= 15 % of the virgin pulp cost83
Figure 5-17: Quantities produced from different paper grades at Cw=15% for
different production capacities in case of sustainability optimization83
Figure 5-18: The effect of the production capacity on the environmental impact for
both of the profit optimality and the Multi-objective optimization solutions at waste
paper cost equal to 5 % of the virgin pulp cost84
Figure 5-19: The effect of the production capacity on the environmental impact for
both of the profit optimality and the Multi-objective optimization solutions at waste
paper cost equal to 15 % of the virgin pulp cost85
Figure 5-20: A comparison between quantities produced of different paper products at
marginal profit optimization fig. (a) and at the multi objective optimization fig.(b)at
waste paper cost =15% of the virgin pulp cost86
Figure 5-21: The effect of the production capacity on the number of job opportunities
for both of the marginal profit optimization and the Multi objective optimization
solutions at Cw= 5 %87
Figure 5-22: The effect of the production capacity on the number of job opportunities
for both of the marginal profit optimization and the Multi objective optimization
solutions at Cw= 15%88
Figure 5-23: The results of the sustainability optimization for the net profit at each
waste paper cost92
Figure 5-24 the results of multi-objective optimization for the environmental impact
at each waste paper cost93
Figure 5-25: Results of multi-objective optimization for number of job opportunities
at each waste paper cost94
Figure 5-26 Product mix at each waste paper cost95

List of Tables

Table 5-1: Average selling prices of different paper grades	.66
Table 5-2: Assumed paper demand of different grades	.66
Table 5-3: Environmental impact values for different paper manufacturing processe	es
	.67
Table 5-4: Assumed plant capacity levels	.67
Table 5-5: Assumed distances between SC members	.67
Table 5-6: Assumed annual plant equipment depreciation based on capacity	.68
Table 5-7: Assumed costs elements of paper manufacturing throughout the SC	.68
Table 5-8: Other assumptions for paper manufacturing and waste treatment data	.68
Table 5-9:Marginal profit calculation per unit at Cw=5%	.69
Table 5-10: Marginal profit calculation per unit at Cw=15%	.69
Table 5-11: Optimal paper quantities produced from each paper grade at waste cost	
=5% at different production capacities.	.75
Table 5-12: Optimal paper quantities produced from each paper grade at Cw =15%	at
different production capacities	.76
Table 5-13: Comparison between the number of job opportunities at waste paper co	ost
=5% and 15% for different production capacities.	.79
Table 5-14: Optimal Marginal profit at waste paper costs 5% and 15% for profit	
optimization and multi objective optimization at different production capacities	.84
Table 5-15: Environmental impact values at different waste paper costs as obtained	
from profit optimization and multi objective optimization	.87
Table 5-16: Number of job opportunities at different waste paper costs as obtained	
from profit optimization and multi objective optimization	.89
Table 5-17: Percent change in marginal profit, environmental impact and number of	f
job opportunities resulted from sustainable and economical optimization at waste	
paper cost of 5% and different plant capacities	.90
Table 5-18: Percent change in marginal profit, environmental impact and number of	f
job opportunities resulted from sustainable and economical optimization at waste	
paper cost of 15% and different plant capacities	.91

Nomenclature

Sets:

G: Number of different paper grades produced in the factory; $g = \{1, ..., G\}$

Parameters:

Cap_F Production capacity at the factory in Tons.

Cap_S Sorting capacity in the sorting area in Tons.

C_W Waste paper cost in \$/ton

Cost of preparation and sorting of waste paper at sorting area in \$/ton

 DEM_g Demand of customer of each paper grade g in tons, $g=\{1,...,G\}$

Dp Depreciation value in \$.

 $\ensuremath{\mathsf{EP}}_g$ Environmental impact of producing each paper grade g;

 $g = \{1, ..., G\}$.

E_L Environmental impact of waste paper landfilling.

E_N Environmental impact of waste paper incineration.

E_R Environmental impact of paper recycling.

E_T Environmental impact of paper transportation.

L_C Paper Landfill cost in \$/ton.

 N_C Paper incineration cost in \$/ton.

 P_g Cost of production of each paper grade g in \$/ton; g ={1,....,G}

Perc_R Mill broke represented as a percentage of paper production to be returned back and remanufactured.

Perc_w Fixed percentage of waste paper quantity is to be incinerated or landfilled as it is unrecyclable.

Q_J Quantity of unsorted waste paper that offers a job opportunity.

 R_g Selling price of each paper grade g in \$/ton; g={1,....,G}

 R_S Selling price of sorted waste paper in \$/ton

T_C Paper transportation cost in \$/ton kilometre.

V_J Variable number of jobs at the sorting area.

X_{FC} Distance from the factory to customer in km.

X_{MS} Distance from the Market to the sorting area in km.

 X_{SF} Distance from the sorting area to the factory.

Decision variables:

- Q_L Quantity of landfilled waste paper at the sorting area in tons.
- Q_N Quantity of incinerated waste paper at the sorting area in tons.
- Q_{W} Quantity of unsorted waste paper bought from the Market to sorting area in tons.
- Q_{SR} Quantity of sorted wastepaper sent to factory to be recycled in tons.
- Q_{SS} Quantity of sorted wastepaper to be sold in tons.

List of Abbreviations

LCA Life Cycle Assessment

LCI Life Cycle Inventory

LP Linear Programming

MILP Mixed Integer Linear Programming

MOO Multi Objective optimization

SC Supply chain