Computer System Department Faculty of Computer & Information Sciences Ain Shams University

Wireless Outdoor Location Estimation in Based Urban

a thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences.

By

Mohamed Hussein Abdel Meniem

Computer Systems Department,
Faculty of Computer & Information Sciences,
Ain Shams University

Under Supervision of

Prof. Dr. Ahmed Hamad

Emeritus Prof. of Computer Systems at Ain Shams University

Dean of Faculty of Informatics and Computer Sciences

The British University in Egypt

Prof. Dr. Hossam Faheem

Head of the Computer Systems Department
Faculty of Computer & Information Sciences
Ain Shams University

Dr. Eman Shaaban

Computer Systems Department,
Faculty of Computer & Information Sciences
Ain Shams University
Cairo, Egypt 2012

Computer System Department Faculty of Computer & Information Sciences Ain Shams University

Wireless Outdoor Location Estimation in Based Urban

a thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences.

By

Mohamed Hussein Abdel Meniem

Computer Systems Department,
Faculty of Computer & Information Sciences,
Ain Shams University

Under Supervision of

Prof. Dr. Ahmed Hamad

Emeritus Prof. of Computer Systems at Ain Shams University

Dean of Faculty of Informatics and Computer Sciences

The British University in Egypt

Prof. Dr. Hossam Faheem

Head of the Computer Systems Department
Faculty of Computer & Information Sciences
Ain Shams University

Dr. Eman Shaaban

Computer Systems Department,
Faculty of Computer & Information Sciences
Ain Shams University
Cairo, Egypt 2012

Acknowledgement

Acknowledgement

All praise and thanks to ALLAH, who provided me the ability to complete this work.

I hope to accept this work from me and be useful contribution to our nation.

I am grateful of my parents, my sister and my family who are always providing help and support throughout the whole years of study. I hope I can give that back to them.

I also offer my sincerest gratitude to my supervisors, Prof. Dr. Ahmed Hamad, Prof. Dr. Hossam M. Faheem, and Dr. Eman Shaaban who have supported me throughout my thesis with their patience, knowledge and experience.

Special thanks to Prof. Dr. Ahmed El-Rabbany, Ryerson University, Toronto, Canada for his great support.

I would like also to thank Prof. Mustafa Yousef, Department of Computer Science and Engineering, Egypt- Japan University of Science and Technology, Alexandria, Egypt.

I also offer my acknowledge and express my appreciation to Abeer Ghandar, Hatem Darweesh, Haytham Alaa, Karim Emara, Nouran El-Kafrawy, Ramy M. Abdelal, Sally El-Ghoul and Wael H. Khalifa for their concern and thankful help.

I also thank R&D department in Vodafone Egypt, Alaa Zaher, Ahmed Sedky, Hesham Amin, Manal Badrah, Mohamed Dardier, Mohamed Sherif, and Shady Eneim.

Finally, I would thank my friends and all people who gave me support and encouragement.

Abstract

Abstract

Location awareness in general is emerging a tremendous interest in different fields and scopes. Position is the key element of context awareness. Although Global Positioning System (GPS) produces an accurate position, it requires an open sky and does not work indoors. It is obvious that GPS provides most accurate positions; it is commonly used with navigation applications and some of emergency applications. Moreover, some of the traffic analysis applications use GPS-enables smart phones as probes for traffic data collection. Since GPS requires a line of sight to the satellite and not all the phones are equipped with GPS, more attention has been given to other alternatives like Wireless Fidelity (WiFi). It is commonly used in the urban and sub-urban areas, hot spots are everywhere. WiFi has been used for localization in many researches and commercial applications.

However, WiFi-based localization techniques address several challenges but unfortunately not all the cellular phones are equipped with WiFi. Hence, Global System for Mobile Communications (GSM) based localization techniques appear again. GSM represents about 85% of today's cell phones. GSM consumes minimal energy if compared to WiFi and GPS. After the revolution of the smart phones and the development of the mobile applications, some approaches have been implemented, especially those who use accessible parameters from operating systems and do not require any modification on the software or hardware layer. Most of these approaches use parameters like Received Signal Strength (RSS) and Time Advance (TA).

Abstract

GSM-based phones are also used in traffic monitoring services as dynamic probes or Floating Car Data (FCD). In a default scenario, when Mobile Entity (ME) moves around in the GSM network, it is unavoidable to change between different geographical areas. To know which cell the ME should communicate with, the ME constantly listens to the signals sent out from the different (Base Transceiver Station) BTSs. The signals are measured at certain threshold values of the signal strengths, the ME will decide that it needs to change its serving cell and initiates what is called by a handover (HO) procedure. To measure the different signals, the ME stores information about the currently serving cell, as well as up to six other cells of which it has received the strongest signals, called neighbour cells. All these information are stored in Network Measurements Report (NMR), which is sent to the core network every 480 millisecond in active (in call or data transfer) mode. However, core network can receive same NMR in idle mode by sending paging message to UE.

This thesis presents a set of mobile positioning techniques and methodologies, which can be applied on different types of handhelds. Each technique focuses on one concept like the accuracy, availability or dependency and tries to address the challenges that are faced by the similar system. This thesis also considers using the GSM-based phones as probes for traffic estimation which includes a set of important principles like the travel direction detection, speed estimation, sampling mechanisms and privacy concerns. All the techniques have been practically tested in Egypt roads by using the commercial smart phone and the results concluded were compared to the latest approaches in similar environments.

List of Abbreviations VII

List of Abbreviations

3G 3rd Generation, Mobile Telephony Communication Protocol

AFLT Advanced Forward Link Trilateration

AGPS Assisted GPS

AJAX Asynchronous JavaScript and XML

AMPS Analogue Mobile Phone System, American Mobile Phone System

AoA Angle of Arrival

BID Base station ID

BSC Base Station Controller

BSS Base Station System, Base Station sub-system

Base Transceiver Station

CDMA Code Division Multiple Access

CI Cell Identity

CID Cell ID

CMC Computer Mediated Communications

COO Cell of Origin

DAB Digital Audio Broadcasting

D-AMPS Digital American/Advanced Mobile Phone System

D-GPS Differential GPS

DoA Direction of Arrival

DS Distance between Samples

DSRC Dedicated Short Range Communication

E-911 Enhanced 911 (Public Safety Answering Point)

ECEF Earth-Centered, Earth-Fixed

EDGE Enhanced Data Rate for Global Evolution

List of Abbreviations VIII

EFLT Enhanced Forward Link Trilateration

EgTNS Egypt Traffic and Navigation Systems

EMI Electromagnetic Interference

ETC Electronic Toll Collection

FCD Floating Car Data

FM Frequency Modulation

GDOP Geometric Dilution of Precision

Geo- Associate Internet Resources with geographical locations

GEO Geostationary Orbit

GERAN GSM EDGE Radio Access Network

GIS Geographical Information System

GLONASS Global Navigation Satellite System

GML Geography Markup Language

GPRS General Packet Radio Service

GPS Global Positioning System

GPX GPS exchange format

GRASS Geographic Resources Analysis Support System

GSM Global System for Mobile Communications

GSMA GSM Association

HAR Highway Advisor Radio

HSGPS High Sensitivity GPS

HTML Hyper Text Markup Language

ICT Information and Communication Technology

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IPDL Idle Period Down Link

IT Information Technology

ITS Intelligent Transportation Systems

IVR Interactive Voice Response

LBS Location Based Services

List of Abbreviations IX

LEO Low-Earth Orbit

LMU Location Measurement Unit

LOS Line Of Sight

MCC Mobile Country Code

MNC Mobile Network Code

MPEG Moving Pictures Experts Group

MS Mobile Station

MSISDN Mobile Station International ISDN

NB Node B (UMTS Systems)

NMEA National Marine Electronics Association

OGC Open Geospatial Consortium

OMA Open Mobile Alliance

OSM Open Street Maps

OTDoA Observed Time Difference of Arrival

PDA Personal Digital Assistant

PDE Positioning Determining Entity

PND Personal Navigation Device

PPP Public-Private Partnership

PVT Position Velocity Time

RDS Radio Data System

RNC Radio Network Controller

RSS Real Simple Syndication - Received Signal Strength

RSSI Received Signal Strength Indication

RTT Round Time Trip

RXLEV Reception Level

SMLC Serving Mobile Location Center

SMS Short Message Service

SNR Signal to Noise Ratio

SOAP Simple Object Access Protocol

SOS Letters which represent the radio telegraphic signal (... --- ...), Cry for help

List of Abbreviations X

TA Timing Advance

TDMA Time Division Multiple Access

TDoA Time Difference of Arrival

TETRA Trans European Trunked Radio

TMC Traffic Message Channel, Traffic Management Center

TMSI Temporary Mobile Subscriber Identity

TOA Time of Arrival

TTFF Time To First Fix

UE User Equipment

UMTS Universal Mobile Telecommunication System

UTRAN UMTS Terrestrial Radio Access Network

WAAS Wide Area Augmentation System

WCCL Weighted Corrected Centroid Localization

WCL Weighted Centroid Localization

WiFi Wireless Fidelity

XML Markup language

Publications XI

Publications

- Ahmed M. Hamad, Mohamed H. Abdel Meniem, R. Medhat, Towards a Complete Navigation/Traffic Integrated System Adapted to Egypt Roads, The International Navigation Conference, Melaha 2010, Egypt.
- Mohamed H. Abdel Meniem, Ahmed M. Hamad, Eman Shaaban, Fast and Accurate Practical Positioning Method using Enhanced-Lateration Technique and Adaptive Propagation Model in GSM Mode.
- -Mohamed H. Abdel Meniem, Ahmed M. Hamad, Eman Shaaban, Practical Positioning and Traffic Estimation Techniques using Relative Received Signal Strength RRSS in GSM mode.
- Mohamed H. Abdel Meniem, Ahmed M. Hamad, Eman Shaaban, Speed Estimation and Travel Direction Detection using Handover in GSM.

Table of Contents

Ackno	wledgement	IV
Abstra	act	v
List of	Abbreviations	VII
Public	ations	XI
List of	Figures	XIV
List of	Tables	XVII
1. In	troduction	2
1.1	0verview	2
1.2	Problem Statement	5
1.3	Motivation	6
1.4	Objectives	8
1.5	Thesis Outline	8
2. Po	ositioning Systems	11
2.1	Fundamentals of Positioning	11
2.2	Satellite-Based Positioning (GPS)	21
2.3	Mobile Positioning Techniques	33
2.4	Inertial Navigation System (INS) and Dead Reckoning	50
2.5	Pattern Matching and Fingerprinting	52
2.6	Privacy Concerns	55
3. Ro	oad Traffic Monitoring and Analysis Methodologies	58
3.1	Introduction	58
3.2	Sensor Technology	59
3.3	Data Transfer (Communication Links)	65
3.4	Data Sampling and Analysis	67
3.5	General Terms and Definitions	69
3.6	Recommended Performance Measures for Traffic Flow Models and ITS	71

3.7	Current Challenges and Future Directions	73
4.	Telematics and the New Frontier	75
4.1	Introduction	75
4.2	Enabling Technologies	76
4.3	Telematics Applications	89
4.4	ł Challenges	91
4.5	Conclusion	93
5. I	Proposed Approaches	95
5.1	Introduction	95
5.2	Enhanced Lateration Technique	97
5.3	Positioning using Relative Received Signal Strength (RRSS)	102
5.4	Rule-based Traffic Estimation Technique	103
5.5	Speed Estimation and Travel Direction Detection using Handover in GSM	105
5.6	Summary	108
6. I	Evaluation of Proposed Approaches	110
6.1	Introduction	110
6.2	Evaluation of E-Lateration Technique and Adaptive Propagation Model	111
6.3	B Evaluation of Rule-Based Positioning Technique	118
6.4	Evaluation of Rule-Based Traffic Estimation Technique	123
6.5 GS	Evaluation of Speed Estimation and Travel Direction Detection using Har M mode	
6.6	6 Overall Evaluation	130
7. (Conclusion and Future Work	133
7.1	Synopsis	133
7.2	Puture Work	134
Refe	rences	137
Appe	endices	147

List of Figures XIV

List of Figures

Figure 2.1: Positioning Infrastructures	12
Figure 2.2: Proximity Sensing	13
Figure 2.3: Circle lateration in 2D	15
Figure 2.4: Hyperbolic Lateration	16
Figure 2.5: Angulation	17
Figure 2.6: GPS Segments	21
Figure 2.7: Influenced propagation of radio waves through the earth's atmosphere	23
Figure 2.8: Good geometrical alignment of two satellites	25
Figure 2.9 Illustration of always best located system	32
Figure 2.10: Positioning Architecture	34
Figure 2.11: Timing advance with omnidirectional and sectorized antenna	34
Figure 2.12: Hyperbolic D-TDoA	35
Figure 2.13: Relationship between GTD, OTD and RTD	36
Figure 2.14: Signal branches between terminal and base station	38
Figure 2.15: Cell-based positioning methods in UMTS	38
Figure 2.16: OTDOA positioning derived from (3GPP 2008a)	40
Figure 2.17: OTDoA with IPDL	41
Figure 2.18: Deriving the hyperbolic function for the time delay	42
Figure 2.19: A-GPS Infrastructure	45
Figure 2.20: Database Correlation Method (DCM) (a) Calibration Procedure (b)	
Localization Procedure	54