Pediatric Respiratory Assessment Measure (PRAM Score) in Comparison with Modified pulmonary Index Score (MPIS) in the Assessment of the Severity of Acute Asthma Attack in Asthmatic Children between Two to Fourteen Years of Age

Thesis

Submitted for Partial Fulfillment of M.Sc in Pediatrics

By May Abdallah Mohamed Sary M.B. B.Ch

Supervisors **Dr. Manal El Sayed Abd El Meguid**

Professor of Pediatrics Faculty of Medicine, Cairo University

Dr. Azza Kamal Abd El Megeid

Assistant Professor of Pediatrics Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2015

Acknowledgment

Thanks to Allah greater of all for helping me to complete this work.

I would like to express my deepest gratitude and profound thanks to **Dr. Manal El Sayed Abd El Meguid,** Professor of Pediatrics, Faculty of Medicine, Cairo University, for her continuous encouragement, guidance, and kind supervision.

I would like to express my gratitude and thanks to **Dr. Azza Kamal Abd El Megeid**, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University, for his invaluable guidance, keen suggestion and time he freely gave, throughout the whole work.

Finally, no words can describe my appreciation for my parents, brother and sister who provided me with everything I needed. Without them, getting a professional degree would have been impossible, I thank them for all the prayers they made to help me through my research.

May Abdallah

Abstract

Objectives: To test the PRAM score in comparison with MPIS as objective tools for assessment of the severity of acute asthma exacerbation.

Study design: A cross sectional study was adopted by applying the [PRAM] score and [MPIS] on 100 asthmatic children aged from two to fourteen years old presented to the emergency department of Abu El-Reesh Cairo University Children's hospital by acute asthma exacerbation, both scores were tested initially, one hour post inhaled bronchodilator and at discharge.

Results: This study included 57 boys and 43 girls, with mean age of 5.05±2.4 years, there was highly statistical significant difference initially between PRAM and MPIS, but no statistical significant difference between them after initial bronchodilator therapy and at discharge and there was highly statistical significant relation between fate and calculated scores by both PRAM and MPIS.

Conclusions: Acute asthma is a leading cause for hospitalization. No specific tool for evaluation of acute asthma severity is actually in use. PRAM score is a valid, reliable and good predictive tool for evaluation of severity acute asthma.

Keywords:

Asthma, PRAM, MPIS, Pediatrics.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
Introduction	1
Aim of the Study	4
Review of literature:	
Chapter 1- Introduction to Asthma	5
Chapter 2- Pathophysiology of Asthma	19
Chapter 3- Assessment of Asthma Severity	37
Chapter 4- Scoring System in Asthma	62
Patients and Methods	72
Results	76
Discussion	111
Summary	120
Conclusion	124
Recommendations	125
References	126
Appendix	142
Arabic Summary	

List of Abbreviations

Abb.	Full term
ADAM33	Disintegrin and Metalloproteinase Domain-Containing Protein 33
AHR	Airway Hyperresponsiveness
APC	Antigen Presenting Cells
BD	Bronchodilator
BECs	Bronchial Epithelial Cells
BMI	Body Mass Index
CAMP	Cyclic Adenosine Monophosphate
CAS	Childhood Asthma Study
COPD	Chronic Obstructive Pulmonary Disease
	Dendritic Cells
ECM	Extracellular Matrix
FeNO	Fractional Exhaled NO
FEV1	Forced Expiratory Volume in the First Second (The Volume of Air Exhaled During the First Second of this Maneuver)
FGF	Fibroblast Growth Factor
FLG	
	Forced Vital Capacity (Air Forcibly Exhaled from the Point of Maximal Inhalation)
GINA	Global Initiative For Asthma
GM-CSF	Granulocyte-Macrophage Colony-Stimulating Factor
HS	Highly Significant
ICON	International Consensus on Pediatric Asthma
ICS	Inhaled Corticosteroids
IFN	Interferon
IgE	Immunoglobulin E
IL	Interleukin
LABA	Long-Acting Inhaled β2-Agonists
MBP	major Basic protein
MMP	Matrix Metalloproteases
MPIS	Modified Pulmonary Index Score
	National Asthma Education and Prevention Program
NO	
NS	Non-Significant

List of Abbreviations (Cont...)

Abb.	Full term
PCO2	Partial Pressure of Carbon Dioxide
PDGF	Platelet-Derived Growth Factor
PEF	Peak Expiratory Flow
PEFR	Peak Expiratory Flow Rate
PRAM	Pediatric Respiratory Assessment Measure
RSV	Respiratory Syncytial Virus
SABA	Short Acting B2 Agonist
SaO2	Saturation Level of Oxygen In Hemoglobin
SD	Standard Deviation
TCRs	Tucson Children's Respiratory Study (TCRS)
TGF	Transforming Growth Factor
Th	T Helper Cells
TNF	Tumor Necrosis Factor
VEGF	Vascular Endothelial Growth Factor

List of Tables

Table	Subject	Page
(1)	Factors Influencing the Development of Asthma	6
(2)	Severity of Asthma Exacerbations	44
(3)	Differential Diagnosis of Asthma in Children 5 Years and	47
	Younger.	
(4)	Pediatric Asthma Differential Diagnosis	48
(5)	Initial Assessment of Acute Asthma Exacerbations in Children	50
	≤ Five Years	
(6)	Clinical Characteristics of Controlled, Partially Controlled and	51
	Uncontrolled Asthma.	
(7)	Common Usage of the Terms"Severity "and "Control "in	52
	Asthma, Indicating both the Overlapping and the	
	Distinguishing Features.	
(8)	Characteristics of Clinical Asthma Severity Scores	64
(9)	Modified Pulmonary Index Score	65
(10)	Pediatric Respiratory Assessment Measure (PRAM) Score	67
(11)	Demographic Data of the Studied Patients	76
(12)	Relation between Sex and Fate of the Patients	78
(13)	Relation between Age and Fate of the Patients	78
(14)	Relation between Family History and Fate of the Patients	78
(15)	Relation between ICS Intake and Fate	79
(16)	Descriptive for PRAM Score Initially, post Inhaled	80
	Bronchodilator Therapy and at Discharge	
(17)	Grading of Severity According to Total PRAM Scores Initially,	82
	One Hour after Inhaled Bronchodilator and at Discharge	

List of Tables (Cont...)

Table	Subject	Page
(18)	Relation between Mean PRAM Scores and Fate Initially, One	83
	Hour after Inhaled Bronchodilator and at Discharge	
(19)	Descriptive for MPIS Score Initially, post Inhaled	84
	Bronchodilator and at Discharge	
(20)	Assessment of Severity According to MPIS Score Initially, after	86
	One Hour after Bronchodilator and at Discharge	
(21)	Fate and Length of Hospital Stay among the Studied Patients	87
(22)	Comparison between PRAM Score and MPIS Score Initially	88
(23)	Comparison between PRAM Score and MPIS Score post	89
	Inhaled Bronchodilator	
(24)	Comparison between PRAM Score and MPIS Score at	90
	Discharge	
(25)	Correlation between PRAM Score and MPIS Score Initially	91
(26)	Correlation between PRAM Score and MPIS Score post Inhaled	92
	Bronchodilator Therapy	
(27)	Correlation between PRAM Score and MPIS Score at	93
	Discharge	
(28)	Relation between Sex and Calculated Scores Initially, post	94
	Inhaled Bronchodilator and at Discharge	
(29)	Relation between Family History and Calculated Scores	95
	Initially, post Inhaled Bronchodilator and at Discharge	
(30)	Relation between ICS and calculated scores Initially, post	96
	Inhaled Bronchodilator and Discharge	
(31)	Relation between Fate and calculated scores of both PRAM and	97
	MPIS Initially, post Inhaled Bronchodilator and Discharge	

List of Tables (Cont...)

Table	Subject	Page
(32)	Relation between Suprasternal Retractions of the PRAM Score and Fate Initially, after Inhaled bronchodilator Therapy and at Discharge	100
(33)	Relation between Scalene ms. Contraction of the PRAM Score and Fate Initially, after Inhaled Bronchodilator Therapy and at Discharge	102
(34)	Relation between Air entry of the PRAM Score and Fate Initially, after Inhaled Bronchodilator Therapy and at Discharge	103
(35)	Relation between Wheezes of the PRAM Score and Fate Initially, after Inhaled Bronchodilator Therapy and at Discharge	105
(36)	Relation between O2 Saturation of the PRAM Score and Fate Initially, after Inhaled Bronchodilator Therapy and at Discharge	107
(37)	Correlation between Duration of Hospital Stay with both PRAM and MPIS at Triage	108
(38)	Percent of Reduction in PRAM and MPIS after Inhaled Bronchodilator and at Discharge from Initial Presentation among Admitted and Not Admitted Patients	110

List of Figures

Figure	Subject	Page
(1)	Simplified Gene Map of Chromosome5q31-33 the Region	8
	Containing the IL-4 Gene Cluster.	
(2)	The Inflammatory Cycle in Asthma Inflammation	20
(3)	Inflammatory Airway Asthmatic Patients	22
(4)	Regulatory T Cells Targets in Protecting Airways against Asthma	23
(5)	Inflammatory Cells and Inflammatory Mediators	25
	, ,	
(6)	Mediators of Inflammation of Asthmatic Airways	28
(7)	Ongoing Response & Remodeling	33
(8)	Obstruction of the Lumen of the Bronchiole in a Patient with	34
	Asthma	
(9)	Management Approach Based on Control for Asthma	60
(10)	Management of Asthma Exacerbations in Acute Care	61
	Setting	
(11)	Sex Ratio among the Studied Cases.	76
(12)	Percentage of Patients with Positive Family History of	76
	Asthma	
(13)	Percentage of Patients Received Inhaled Corticosteroids	77
(14)	Relation between ICS Intake and Fate	79
(15)	Grading of Severity According to Total PRAM Scores	82
	Initially, One Hour after Inhaled Bronchodilator and at	
	Discharge	
(16)	Mean PRAM Scores Initially, One Hour after Inhaled	83
` .	Bronchodilator and at Discharge	
(17)	Assessment of Severity According to MPIS Score Initially,	86
, .	after One Hour post Bronchodilator and at Discharge	

List of Figures (Cont...)

Figure	Subject	Page
(18)	Fate and Length of Hospital Stay among the Studied	87
	Patients	
(19)	Comparison between PRAM Score and MPIS Score Initially	88
(20)	Comparison between PRAM Score and MPIS Score post	89
	Inhaled Bronchodilator	
(21)	Correlation between PRAM Score and MPIS Score Initially	91
(22)	Correlation between PRAM Score and MPIS Score post	92
	Inhaled Bronchodilator Therapy	
(23)	Correlation between PRAM Score and MPIS Score at	93
	Discharge	
(24)	Relation between PRAM Score and Fate Initially	98
(25)	Relation between PRAM Score and Fate One Hour post	98
	Inhaled Bronchodilator	
(26)	Relation between MPIS Score and Fate Initially	99
(27)	Relation between MPIS score and Fate One Hour post	99
	Inhaled Bronchodilator	
(28),(29)	Relation between Suprasternal Retractions of the PRAM	101
	Score and Fate Initially, after Inhaled Bronchodilator	
	Therapy	
(30),(31)	Relation between Scalene ms. Contraction of the PRAM	103
	Score and Fate Initially, after Inhaled Bronchodilator	
	Therapy	
(32),(33)	Relation between Air entry of the PRAM score and Fate	104
	Initially, after Inhaled Bronchodilator Therapy	

List of Figures (Cont...)

Figure	Subject	Page
(34),(35)	Relation between Wheezes of the PRAM Score and Fate Initially, after Inhaled Bronchodilator Therapy	106
(36),(37)	Relation between O2 Saturation of the PRAM Score and Fate Initially, after Inhaled Bronchodilator Therapy	108
(38),(39)	Correlation between both PRAM Score and MPIS at Triage and Duration of Hospital Stay in the Studied Cases	109
(40)	Percent of Reduction in PRAM and MPIS after Inhaled Bronchodilator and at Discharge from Initial presentation among Admitted and Not Admitted Patients	110

INTRODUCTION

Asthma is the leading chronic disease in childhood and asthma exacerbations are one of the most common medical reasons for children to be brought to the hospital emergency department (ED). These visits, and the subsequent hospitalizations required by a large proportion of patients, account for more than 60% of all costs of asthma care (Farion et al., 2013).

Prevention of asthma morbidity requires assessment of asthma severity and control, which include two domains: (1) impairment, which includes an evaluation of the frequency and intensity of symptoms; and (2) risk, which includes an assessment of the likelihood of asthma exacerbations. Patients with persistent symptoms from asthma were more likely to experience severe asthma exacerbations. Nevertheless, demographic and laboratory predictors of having persistent symptoms are different from predictors of severe asthma exacerbations. Although symptoms and exacerbations are closely related, their predictors are different (*Wu et al.*, 2011).

Accurate measurement of acute asthma severity is important both for decision making and for evaluation of treatment effectiveness. Pulmonary function tests, such as spirometry and peak expiratory flow rate (PEFR), provide objective data on the severity of airway obstruction, but these tests are difficult to perform in young children because of their lack of coordination and comprehension, particularly during asthma attacks. Given that pulmonary function tests are often not feasible or

1

reliable in young children, more than ten clinical scores have been developed to assess asthma severity (Vichyanond et al., 2013).

"Asthma control" refers to the extent to which the manifestations of asthma have been reduced or removed by treatment. Its assessment should incorporate the dual components of current clinical control In 1984, Becker and colleagues introduced Pulmonary Index (PI) developed for assessing severity of acute asthma in children presenting to the ED and to predict admission to the hospital and then in 2005 Carroll et al. developed and evaluated the Modified Pulmonary Index Score which includes six items: (1) oxygen saturation on room air (SpO2), (2) accessory muscle use, (3) inspiratory-to-expiratory flow ratio (I:E ratio), (4) degree of wheezing, (5) heart rate (HR) and (6) respiratory rate (RR). For each of these items, a score of 0 to 3 is assigned based on the severity. The range of total score is 0 to 18. The higher the total score is, the more severe the condition (Maekawa et al., 2014).

Birken et al. identified the preschool respiratory assessment measure (PRAM). This measure include five criteria, one objective criterion and four clinical criteria, three of them namely suprasternal retraction, air entery and wheezing are consistently found in most pediatric asthma scores. The fourth clinical criterion is the presence of scalene muscle contraction, which is present in cases of sever airway obstruction. The objective criterion is the measurement of oxygen saturation (Ducharme et al., 2008).

PRAM was originally validated only in asthmatic preschool children, until Ducharme et al in 2008, used the PRAM score in asthmatic children aged from 2 to 17 years at triage, one hour after initial

bronchodilator and at disposition, they found that it is feasible, valid, responsive and reliable tool to determine asthma severity in both preschool and school aged children. PRAM at triage had high predictive ability as it shows high association with admission rates, and PRAM measured one hour after initial bronchodilator had high predictivity that it can be used to further adjust therapy. Ducharme et al changed the name of the score from the preschool respiratory assessment measure to pediatric respiratory assessment measure with the same abbreviation (PRAM) (Ducharme et al., 2008).