

Nalbuphine as an adjuvant to levobupivacaine induced caudal analgesia in children.

Thesis Submitted For Partial Fulfillment of the Master Degree in Anaesthesiology.

Presented by
Tamer Fathy Tamer Younes
M.B,B.Ch
Faculty of Medicine
Cairo University

Supervisors

Prof. Dr. Mohammed Farouk Youssef

Professor of Anaesthesia, Surgical ICU and Pain Management Faculty of Medicine, Cairo University

Prof. Dr. Reham Husein Saleh

Professor of Anaesthesia, Surgical ICU and Pain Management Faculty of Medicine, Cairo University.

Dr. Heba Mohammed Nassar

Lecturer of Anaesthesia, Surgical ICU and Pain Management Faculty of Medicine, Cairo University.

> Faculty of Medicine Cairo University 2014

Acknowledgement

Foremost, I would like to express my sincere gratitude to my advisor **Prof. Dr.Mohammed Farouk** Professor of Anaesthesia, Surgical ICU and Pain Management, Faculty of Medicine, Cairo University, for the continuous support of my M.Sc. study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ms.C. study.

Special thanks to **Prof. Dr.Reham Hussein**, Professor of Anaesthesia, Surgical ICU and Pain Management, Faculty of Medicine, Cairo University, for her encouragement, insightful comments, and very valuable questions and suggestions.

My sincere thanks also go to **Dr. Heba Nassar**, Lecturer of Anaesthesia, Faculty of Medicine, Cairo University, who was leading the experimental design, implementation of the research, testing the assumptions, and frame the overall structure and content of the study.

Special thanks to my Father, my Mother, my wife and my daughter for supporting and helping me all through my life. Also special thanks to my brother for his support. Thanks to the parents who approved to me to conduct the study on their sick children's and pear the risk.

Tamer Fathy Tamer

Abstract

This study was to assess the postoperative analgesic requirements and the analgesic effects of caudal Nalbuphine as an adjunct to levobupivacaine in comparison to caudal levobupivacaine. These patients have a shorter hospital stay, and side effects may not be noticed at home. Caudal block has the importance in decreasing consumption of systemic analgesics. A single-shot caudal injection of levobupivacaine as sole local anesthetic provides effective postoperative analgesia without need for systemic analgesics. The duration of block can be extended by adjuvant drugs, which are given together with a local anesthetic agent; thereby more efficient postoperative analgesia can be obtained. For this purpose, many drugs are being used today as adjuvants e.g. morphine, fentanyl, clonidine, ketamine.

Keywords:

EDTA-CEB- CHEOPS-VAS- Levobupivacaine

List of Abbreviations

CA: Caudal anesthesia

CEB: Caudal Epidural Block

CSF: Cerebrospinal Fluid

PDPH: Post Dural Puncture Headache

LA: Local Anesthetics

AAG: Alpha- 1-acid glycoprotein

EDTA: Ethylenediamine tetraacetic acid

MEGX: Monoethylglycinexyl idide.

Cmax: Peak plasma concentration.

PaO2: Arterial oxygen tension.

PABA: Para-Amino Benzoic Acid

CNS: Central Nervous System

TRI: Transient Radicular Irritation

ETT: Endotracheal tube

HR: Heart rate

MAP: Mean arterial pressure

AIIMS: All India Institute of Medical Sciences

MAC: Minimum Alveolar concentration

PCEA: Patient Controlled Epidural Analgesia

VAS: Visual Analogue Scale

CHEOPS: Children Hospital of Eastern Ontario behavioral scale

List of Tables

Table		Page
No.		
Table	Drug Doses for Caudal Epidural Anesthesia.	14
(1)		
Table	Physicochemical properties of clinically used local	19
(2)	anesthetics.	
Table	Pharmacokinetic parameters of clinically used local	24
(3)	anesthetics.	
Table	Maximum recommended doses and approximate duration of	30
(4)	action of commonly used local anesthetic agents.	
Table	Dosages of the commonly used local anesthetics in children	31
(5)	for peripheral nerve blocks.	
Table	Respiratory Depressant Effects of Agonist Antagonists	49
(6)	Compared with Morphine.	
Table	Hemodynamic Effects of Agonist-Antagonist Compounds	50
(7)	Compared with Morphine.	
Table	AIIMS pain discomfort scale.	61
(8)		
Table	Demographic data of the 2studied groups.	63
(9)		
Table	Heart rate (in beats per minute) among the 2 groups.	64
(10)		
Table	Mean arterial blood pressure in mmHg among the 2 groups.	64
(11)		

Table	Time to first analgesia in postoperative hours among the 2	66
(12)	groups.	
Table	AIIMS pain discomfort scale among the 2 groups.	67
(13)		
Table	Sedation scores among the 2 groups	68
(14)		

List of Figures

Figure		Page
No.		
Figure(1)	Anatomy of the sacrum, anterior and lateral view.	
Figure (2)	Surface anatomy for sacral hiatus localization.	7
Figure (3)	Caudal block, lateral position.	10
Figure (4)	technique of needle introduction.	11
Figure (5)	vascular complication of caudal block.	15
Figure (6)	Local anesthetic movement and equilibration of local	21
	anesthetic forms across the nerve membrane and into the	
	sodium channel. B base; BH+, cation.	
Figure (7)	Chemical structure of Nalbuphine.	47
Figure (8)	Heart rate among the 2 groups.	65
Figure (9)	Mean arterial blood pressure among the 2 groups.	65
Figure	Time to first analgesia in postoperative hours among	67
(10)	the 2 groups	
Figure	AIIMS pain discomfort scale among the 2 groups.	68
(11)		

contents

Section One	
Introduction	1
Section Two	
Review of literature	3
Caudal canal block	3
Assessing the effectiveness of caudal block	
Drug Doses for Caudal Epidural Anesthesia	
Complications of caudal bloc	
Pharmacology and toxicity of local anestheti	18
Mechanism of action of local anesthetic agents	20
Factors affecting the degree of local anesthetic block	22
Pharmacokinetics of local anesthetics	23
Classes of local anesthetics	
Dosage of local anesthetics	29
Pharmacology of levobupivacaine	
Local anesthetic toxicity	37
Pharmacology of nalbuphine	47
Section Three:	
patient and methods	54

Section Four	
Results	63
Section Five	
Discussion	70
Section Six	
Summary	79
Section Seven	
Reference	82
Arabic summary	90

Section one: Introduction

INTRODUCTION

Caudal anesthesia for pediatric surgery was first reported in 1933.⁽¹⁾ Since then studies have described the indications for pediatric caudal block, the level of analgesia, recommended doses and pharmacokinetics of local anesthetics used in caudal anesthesia and the general or specific advantages and disadvantages of the technique.⁽²⁻⁵⁾

Caudal anesthesia (CA) is epidural anesthesia of the caudaequina roots in the sacral canal, accessed through the sacral hiatus. CA is a common pediatric regional technique that is quick to learn and easy to perform, with high success and low complication rates. CA provides high quality intraoperative and early postoperative analgesia for sub-umbilical surgery.

In children, CA is most effectively used as adjunct to general anesthesia and has an opioid-sparing effect, permitting faster and smoother emergence from anesthesia. (6)

A single shot caudal anesthetic provides relatively brief analgesia, on the order of 4 to 8 hours depending on the agent used, and is appropriate for inpatient and outpatient management strategies.

A successful caudal anesthetic blockade affords the anesthesiologist the opportunity to reduce intraoperative use of volatile anesthetic agent and to use a narcotic-sparing approach that

ultimately may benefit the patient while providing a better postoperative course with less nausea and vomiting. (7)

Prolongation of anesthesia can be achieved by adding various adjuvants, such as opioids and non-opioids like clonidine, ketamine, midazolam and neostigmine, with varying degrees of success. (8-12)

Nalbuphine also was added in epidural analgesia and provide an increase in the efficacy and the duration of postoperative analgesia. (13)

AIM OF THE WORK

To compare the effects of plain levobupivacaine 0.25% and levobupivacaine 0.25% plus nalbuphine 0.1 mg/kg single-shot caudal epidural for postoperative pain relief in children undergoing surgeries of lower half of the body.

Section two: Review of literature

CAUDAL CANAL BLOCK

Caudal Epidural Block:

Caudal anesthesia has been used for many years and is the easiest and safest approach to the epidural space. When correctly performed there is little danger of either the spinal cord or dura being damaged.

Caudal or sacral epidural block is gaining wider publicity because of proven efficacy in pediatric patient pain management, acute & chronic pain management, spinal endoscopy & epidural adhesiolysis. Though caudal technique was reported earlier than lumbar technique, the first technique lost much of its clinical utility. This was because of inconsistent results secondary to inadequate understanding of anatomy. (14)

Applied Anatomy:

The caudal (sacral) canal extends from the upper border of sacral bone (in relation to lumbar epidural space) to the sacral hiatus. Whole of this canal is enclosed in sacral bone.

Sacrum:

The five sacral vertebrae unite to form sacrum. The sacrum articulates with fifth lumbar vertebra superiorly, coccyx inferiorly & iliac bones laterally. The anterior surface of sacrum has four paired openings for the exit of anterior rami of sacral nerves (*figure 1*).

The posterior surface is convex & rough in nature because of fusion of vertebral elements. Median sacral crest runs over the posterior surface (thick crest represents the fused portions of sacral spinous process). The posterior surface has four pairs of foramina for escape of posterior rami of sacral nerves. The laminae of fifth sacral vertebra (sometimes fourth also) fails to fuse; the resultant gap is called the sacral hiatus. On either side of sacral hiatus are the remnants of the inferior articular processes of the fifth sacral vertebra which are called the sacral cornua. The sacral hiatus is covered by sacrococcygeal membrane which is an extension of the ligamentumflavum and is pierced by coccygeal & fifth sacral nerves. Medial to sacral foramina intermediate sacral crest can be appreciated. They are formed by fusion of transverse process of sacral vertebrae. These crests end at sacral cornua, which are also nothing but remnants of articular process of fifth sacral vertebra. (14)

The sacrum of children is also more narrow and flat compared to the adult population. (6)