

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Echo Doppler Assessment of Left Ventricular Structure and Function in Elderly Subjects with and without Systolic Hypertension

Thesis

Submitted in Partial Fulfillment of the Requirements for the Doctorate Degree in Internal Medicine

By

Doaa Ghanem Ahmed

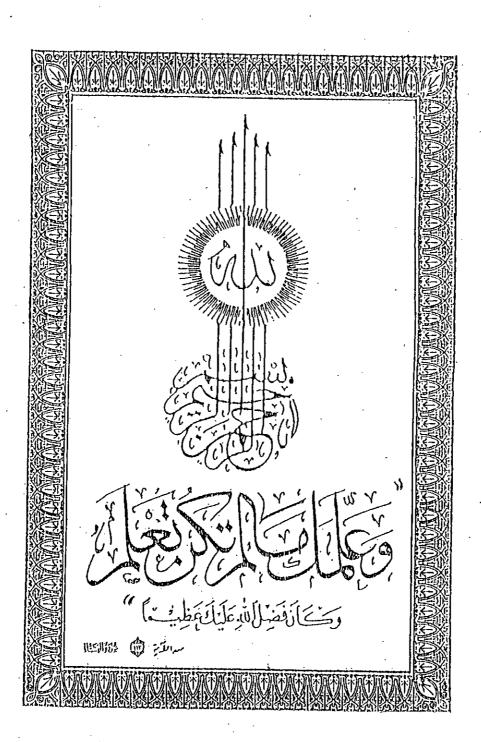
M.B.B.Ch., M.Sc. (Internal Medicine)

Supervised by

Professor Samir S. Abdel Kader

Professor of Cardiology and Internal Medicine Faculty of Medicine - Assiut University

1-NN


Dr. El-Badry I. Abo El-Nour

Assistant Professor of Internal Medicine Faculty of Medicine - Assiut University

Faculty of Medicine - Assiut University

1998

Acknowledgements

jagos salaman eta erren erren

I would like to express my deep gratitude and appreciation to **Professor Samir S. Abdel Kader**, Professor of Cardiology and Internal Medicine, Faculty of Medicine, Assiut University, for his suggesting and planning of this subject, for his patience, encouragement, persistent support and for his valuable time which he devoted for me.

I am profoundly grateful to **Dr. El Badry I. Abo El-Nour**, Assistant Professor of Internal Medicine, Faculty of Medicine, Assiut University, for his continuous and valuable guidance, fruitful discussion and for the benefit of his experience and knowledge.

l would like to thank **Dr. Mahmoud K. Farrag**, Lecturer of Internal Medicine, and Doctors of Cardiology Unit, Faculty of Medicine, Assiut University, for their great help in echocardiology evaluations and measurements of my study's subjects.

Finally, my grateful thanks are expressed to **Dr. Nabiel N.H. Mikhail**, Assistant Lecturer of Community Medicine, Faculty of Medicine, Assist University, for his meticulous help in statistics and finalizing this thesis.

Doaa Ghanem Ahmed

List of Abbreviations

AFF Atrial filling fraction

AC Arterial compliance

ACE Angiotensin converting enzyme

AS Acceleration slope of early filling

ASE American Society of Echocardiography

AT Acceleration time

BMI Body mass index

BP Blood pressure

BSA Body surface area

CAD Coronary artery disease

CI Cardiac index

COP Cardiac output

CVD Cardiovascular disease

DBP Diastolic blood pressure

DNA Deoxy ribonucleic acid

DS Deceleration slope of early filling

DT Deceleration time

ECG Electrocardiography

EF Ejection fraction of LV

EIVA Exercise - induced ventricular arrhythmias

ESS End systolic stress of LV

FS Fractional shortening of LV

HR Heart rate

HSP Heat shock protein

HT Height

IDH Isolated diastolic hypertension

IHD Ischaemic heart disease

IMT Intimal media thickening

ISH Isolated systolic hypertension

IVST Inter ventricular septal thickness

JNC Joint National Committee on Prevention, Detection, Evaluation

and Treatment of High Blood Pressure

LA Left atrium

LV Left ventricular

LVDD Left ventricular end-diastolic diameter

LVDV Left ventricular end-diastolic volume

LVH Left ventricular hypertrophy

LVM Left ventricular mass

LVMI Left ventricular mass index

LVSD Left ventricular end-systolic diameter

LVSV Left ventricular end-systolic volume

MBP Mean arterial blood pressure

MHC Myosin heavy chain

MI Myocardial infarction

MSI Mean LV systolic wall stress index

NT Normotensive

PHT Pressure half time

PSS Peak systolic stress of LV

PVA Peak late diastolic inflow velocity (A)

PVE Peak early diastolic inflow velocity (E)

PWT (d) Posterior wall thickness in diastole

PWT (s) Posterior wall thickness in systole

RF Rapid diastolic filling phase

RFP Rapid diastolic filling period

RNA Ribonucleic acid

RWT Relative diastolic wall thickness

SBP Systolic blood pressure

SV Stroke volume

SVI Stroke volume index

SWT Sum wall thickness

Total TVI Total diastole time velocity integral

TPR Total peripheral resistance

TVI A Time velocity integral (A)

TVI E Time velocity integral (E)

VO₂ max Maximal O₂ uptake

WHO World Health Organization

WT Weight

Contents

Introduction and aim of work
Review of literature
I- Aging
- Introduction
- Aging and the heart
- General theories of aging
- Cardiovascular changes in aging
- Assessment of cardiac performance
- Hemodynamics at rest
- Hemodynamics during exercise
- Response to hypertension in the aged heart
Il- Isolated systolic hypertension in the elderly (ISH)
- Introduction and definition
- Prevalence
- Risk of ISH
- Patho-physiology of ISH
- Treatment of ISH
III- Left ventricular hypertrophy in aging and hypertension
- Patho-physiology and sequalae
IV- Echocardiography in aging and systolic hypertension
- Introduction
- Assessment of LV structure
- Assessment of LV systolic function
- Assessment of LV diastolic function
- Echocardiographic changes in elderly
- Echocardiographic changes in ISH
Subjects and Methods
Results
Discussion
Summary
Conclusion
Limitations and recommendations
References
Arabic summary

Introduction and aim of work

Introduction and Aim of Work

The elderly populations have their own demographic structures, their own mortality indexes and their own special problems of disease, disability and need for support (WHO, 1984).

There is a wide preconception that cardiovascular function decreases as subject getting old. Also, the prevalence and severity of cardiovascular disease increase with age. Thus there is difficulty in dissociating disease from aging and aging itself may change the rate of disease progress (Elveback and Lie, 1984 and Weisfeldt and Gerstenblith, 1990).

With aging there are variable changes in left ventricular (LV) structure and function. Normal aging may lead to decrease in the LV diastolic filling which leads to diastolic dysfunction and finally congestive heart failure (Stuffer and Gaasch, 1990 and Nishimura and Tajik, 1997). However, there are controversial points about LV structure and systolic function changes still unsolved. Some studies reported that in healthy elderly LV mass remains stable and does not increase in the absence of other risk factors such as increased blood pressure (BP) and body mass (Dannenberg et al., 1989 and Lernfelt et al., 1991). Other studies documented an increase in LV mass in healthy elderly

(Gardin et al., 1987 and Sagie et al., 1993). Also, other studies mentioned that LV systolic function does not decrease as a consequence of normal aging (Port et al., 1980; Fleg, 1986 and Lernfelt et al., 1991), while others reported that healthy elderly show decrease in systolic function indexes that could be partially compensated by the increase in wall thickness (Rodeheffer et al., 1984 and Merino et al., 1988).

One of the most significant age associated changes is the increase in systolic BP (Avolio et al., 1985). It has become clear in the past decade that systolic BP is at least as important determinant of cardiovascular sequelae as diastolic BP. Subjects with isolated systolic hypertension (ISH) show excessive cardiovascular morbidity and mortality and ISH is associated with two-to-three fold increased risk of stroke, coronary artery disease and congestive heart failure (Wilking et al., 1988; Staessen et al., 1990; Psaty et al., 1992 and Smulyan and Safar, 1997).

It has been shown that elderly patients with ISH have well preserved LV systolic function, high prevalence of LV hypertrophy and abnormal diastolic filling in comparison to elderly normotensive control (Pearson et al., 1991 and Sagie et al., 1993).