Evaluation of The Results of Dega Acetabuloplasty in Management of DDH in Walking Children under 4 Years

Thesis

Submitted for Partial Fulfillment of requirement of M.D.

Degree in Orthopedic Surgery

By

Eyad Abd-Allah Ahmed Elgebaly

M.B.B.Ch., M. Sc. of Orthopedic Surgery.

Supervised by

Prof. Dr. Hassan Magdy El Barbary

Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University

Dr. Abo Bakr Zain Mohammed

Lecturer of orthopedic surgery,
Faculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2015

بسم الله الرحمن الرحيم

وما اوتيتم من العلم الا قليلا

صدق اللة العظيم

Contents

Acknowledgment
Aim of work
Introduction3
Embryology & hip development5
Anatomy of the hip joint12
Pathology
Incidence & etiology41
Clinical diagnosis47
Radiological diagnosis52
Treatment63
Complications90
Patients & methods99
Results
Case presentation137
Discussion
Conclusion
Summary
References
Arabic summary

Lists of Abbreviations

Abbreviation	Meaning			
DDH	Developmental dysplasia of the hip.			
AVN	Avascular necrosis.			
AI	Acetabular index.			
CE angle	Centre edge angle.			
Lt. OA	Left occipito-anterior.			
OR	Open reduction.			
FO	Femoral osteotomy.			
VDO	Varus derotational osteotomy			
AP	Antero-posterior.			
Lat	Lateral.			
3D	Three dimension.			
U/S	Ultrasonography.			
MRI	Magnetic resonance imaging.			
CT scan	Computed tomography scan.			
GA	General anaesthesia.			
AIIS	Anterior inferior iliac spine.			
ASIS	Anterior superior iliac spine.			

Lists of figures

Figure	Title	Page		
1	The proximal part of the femur of an infant	7		
2	The normal c-shaped acetabular cartilage complex and labrum.			
3	The hip joint anatomy			
4	Stages in the ossification of the femur	13		
5	Femoral neck anteversion, acetabular anteversion and centeredge angle	14		
6	The acetabulum	15		
7	The importance of adequate lowering of the femoral head before hip abduction	17		
8	Anterior view of the hip joint	21		
9	Posterior view of the hip joint	22		
10	course of hip circulation from the profunda femoris artery	24		
11	Pathology of the unstable hip that is subluxatable	30		
12	Pathology of the dislocatable hip			
13	Pathology of the dislocated hip that is irreducible	32		
14	The iliopsoas tendon as an obstacle to closed reduction	33		
15	The shortened pelvifemoraJ muscles in long standing DDH	35		
16	Line measurements made on the anteroposterior radiograph	52		
17	Von Rosen lines (abduction-internal rotation view)	54		
18	The center edge (CE) angle	55		
19	A triangular teardrop configuration in DDH	55		
20	AP x-ray of the hips of an 18-month old infant with a smaller ossific center on the left side	56		
21	A, The technique for obtaining the false profile view. B, The	57		
22	actual image that is obtained. C, the ventral inclination angle	50		
22 23	AP arthrogram of a patient with congenital dislocation of the hip Arthrogram of right DDH a) Before b) After reduction	59 60		
24	Test of stability Common polyic estactomics for treatment of DDH	70		
25	Common pelvic osteotomies for treatment of DDH The principle of Selter inneminate esteotomy	74		
26	The principle of Salter innominate osteotomy	77		
27	pemberton osteotomy	86		
28	Dega osteotomy	89		

29	Buchholz and Ogden classification of femoral head AVN	92		
30	Graphical distribution of patients in different age groups			
31	Graphical distribution of patients in gender groups			
32	Graphical distribution of the affected sides			
33	Tönnis grades for dislocation			
34	Adductor tenotomy			
35	Anterior iliofemoral (Bikini) incision			
36	Important structures during exposure			
37	Exposure of the capsule & T-shaped incision of the capsule			
38	ligamentum teres			
39	Cleaned acetabular cavity	112		
40	Guide wire insertion under fluoroscopy	113		
41	Dega osteotomy	115		
42	Placement of the graft	116		
43	Femoral osteotomy	117		
44	Post-operative hip spica cast	118		
45	Graphical representation of overall clinical results	120		
46	Graphical representation of the final radiological results	121		
47	Graphical representation of Pre-operative (AI) and at the final follow up	122		
48	Graphical representation of Pre-operative (AI) and final clinical outcome	123		
49	Graphical representation of the Relation between acetabular index final and final clinical outcome	124		
50	Graphical representation of the relation between Center edge (CE) angle final and final outcome	126		
51	Graphical representation of the relation between age at time of surgery and final clinical outcome	127		
52	Graphical representation of the distribution of final clinical results between sex groups	128		
53	Graphical representation of The distribution of final clinical results among the side groups	129		
54	Graphical representation of Pre-operative (AI) and final radiological outcome.	130		
55	Graphical representation of Final (AI) and final radiological outcome	131		
56	Graphical representation of the final (CE) angle and final radiological outcome	132		
57	Graphical representation of the effect of age at the time of surgery on the final radiological outcome	133		

58	Graphical representation of the distribution of the final radiological results between patient's sex groups	134
59	Graphical representation of the distribution of final radiological results between the side groups	135
60	Graphical representation of the relation between the final clinical results and the final radiological results	136
61	Case no. 1, radiographs	138
62	Case no. 2, radiographs	140
63	Case no. 3, radiographs	142
64	Case no.4, radiographs	144
65	Case no. 5, radiographs	146
66	Case no.6, radiographs	148
67	Case no.7, radiographs	150

Lists of tables

Table	Title	Page
Ι	Distribution of patients in different age groups	99
II	Distribution of patients in gender groups	100
III	Side distribution	101
IV	Dislocation grade	102
V	Preoperative acetabular index (AI) and center edge angle(CEA)	102
VI	The overall final clinical result	119
VII	The final Radiological result	121
VIII	The acetabular index pre-operatively and at the end of follow up	122
IX	Pre-operative acetabular index (AI) and final clinical outcome	123
X	Relation between acetabular index final and final clinical	124
	outcome	
XI	Relation between the center edge angle pre-operatively and at	125
	the end of follow up	
XII	Center edge (CE) angle final and final outcome	126
XIII	The relation between age at time of surgery and final clinical outcome	127
XIV	The distribution of final clinical results between sex groups	128
XV	The distribution of final clinical results among the side groups	129
XVI	Pre-operative acetabular index (AI) and final radiological outcome	130
XVII	Final (AI) and final radiological outcome	131
XVIII	Final (CE) angle and final radiological outcome.	132
XIX	Effect of age at the time of surgery on the final radiological outcome	133
XX	distribution of the final radiological results between patient's	134
ΛΛ	sex groups	134
XXI	Distribution of the final radiological results between the side	135
	groups	
XXII	The relation between the final clinical results and the final radiological results.	136

Abstract

Developmental dysplasia of the hip (DDH) refers to a complete spectrum of pathologic changes involving the developing hip.

Early diagnosis and management is critical to successful outcome and to avoid residual abnormalities and eventual early degenerative arthritis.

Over 18 months of age operative management is usually recommended and includes open reduction and suitable type of pelvic osteotomy.

There are different types of pelvic osteotomy either reorientation or reshaping osteotomies.

Dega acetabuloplasty is considered one of the favourable reshaping procedures and it is most valuable in severe dysplasia without need for internal fixation and for another surgery to remove the fixation.

Key words

Dega – pelvic osteotomy

Acknowledgment

Praise to "Allah", the most gracious and the most merciful Who guides me to the right way

I am greatly honored to express my gratitude to **Prof. Dr. Hassan El-Barbary** Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University, for guidance, great help, encouragement and his creative support throughout the whole work up of this thesis.

I would like to express my gratitude to **Dr. Abo Bakr Zain Mohammed** lecturer of Orthopedic Surgery, Faculty of Medicine, Cairo

University, for his valuable advice and help.

Last but not least, I would like to thank **prof. Dr. Ahmed Amin Galal** the head of orthopedic department.

I am so grateful to **my parents** and to **my family** who helped me a lot throughout my life and my work by their love, advice, support and time.

Aim of the work

The aim of this study is to evaluate the results of Dega acetabuloplasty in treatment of DDH in walking children under 4 years of age.

Introduction

Developmental dysplasia of the hip (DDH) refers to a complete spectrum of pathologic changes involving the developing hip, ranging from acetabular dysplasia to hip subluxation or dislocation. (1)

DDH is the most common disorder of the hip in children. 10 in 1,000 children (1%) are born with hip subluxation or dysplasia. One in 1,000 children (0.1%) are born with a dislocatable hip. Eighty percent of affected children are females. The left hip is more commonly involved (60%). (1,2)

The exact etiology is largely unknown but is thought to be multifactorial (genetic, hormonal, and mechanical). DDH occurs more frequently in first child and with breech presentation (30% to 50%). Family history is a strong risk factor. (1, 3)

Early diagnosis of DDH is critical to a successful outcome. Acetabular development will go to be abnormal if a hip is left subluxated or dislocated. Delay in management results in residual abnormalities and eventual early onset degenerative arthritis. (2) The management of DDH is challenging. The objectives of management include early diagnosis, reduction of the dislocation, avoidance of avascular necrosis, and correction of dysplasia. (1,3)

In untreated cases over 18 months operative management is usually recommended. Surgical treatment of DDH includes open reduction plus capsulorrhaphy plus or minus a suitable type of pelvic osteotomy and or femoral osteotomy. (1, 4, 5)

Selection of the pelvic osteotomy is based on the severity of the dysplasia and the age of the child .Regarding types of pelvic osteotomies there are reorientation procedures and reshaping procedures. (3,6)

Dega osteotomy is considered one of the reshaping pelvic osteotomies. It is supraacetabular semicircular osteotomy in which semicircular cut through the lateral cortex of the ilium directed towards the inner cortex of the ilium just above the triradiate cartilage. (4, 6, 7)

Dega emphasized the importance of maintaining an intact sciatic notch and at least posterior 1/3 of the inner cortex of the ilium to act as a hinge for rotation of the acetabulum in addition to the horizontal limb of the triradiate cartilage and symphysis pubis. (4,7)

Embryology and hip development

For normal growth and development of the hip joint to occur, there must be a genetically determined balance of growth of the acetabular triradiate cartilages and a well-located and centered femoral head. The femoral head and the acetabulum develop from the same primitive mesenchymal cells.

Periods of embryonic development:

Intrauterine life has been divided into phases according to certain characteristics of fetal development as follow:

1- Initial period (ovular phase):

Within two weeks after fertilization the ovum becomes well implanted into the endometrium.

2- Embryonic phase:

Begins from two weeks after fertilization till the end of the eighth week where the major differentiation of tissues and organs is accomplished.

3- fetal period:

It is the period from the eighth week after fertilization to the termination of pregnancy during which the tissues and organs attain maturity.

Four weeks after fertilization, the small lower limb buds begins on the anterior lateral body wall at the lumbar and first sacral segment levels. These buds contain mesenchyme, which differentiate to cartilage, bone, synovium, ligaments, muscles and tendons. During about the **seventh week** of intrauterine life, a cleft develops, defining the future hip joint,