EFFECT OF MODIFIED ATMOSPHERE STORAGE ON KEEPING QUALITY OF STRAWBERRY FRUITS AND TRANSPLANTS

BY

AMANY ATTIA ABD ELLATIF ATTIA

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 1986 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 1998

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

2005

Approval Sheet

EFFECT OF MODIFIED ATMOSPHERE STORAGE ON KEEPING QUALITY OF STRAWBERRY FRUITS AND TRANSPLANTS

BY

AMANY ATTIA ABD ELLATIF ATTIA

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 1986 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 1998

This	thesis for Ph.D. degree has been approved by:
Prof.	Dr. Shamel Ahmed Shanan
Prof.	Dr. Abd EL Rahim Sharaf Abd EL Monaem Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University
Prof.	Dr. Ahmed Mahmoud El Gizawy

Date of Examination 13 / 8 / 2005

EFFECT OF MODIFIED ATMOSPHERE STORAGE ON KEEPING QUALITY OF STRAWBERRY FRUITS AND TRANSPLANTS

BY

AMANY ATTIA ABD ELLATIF ATTIA

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 1986 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 1998

Under the supervision of:

Prof. Dr. Ahmed Mahmoud El Gizawy

Prof. of Vegetable Crops, Dep. of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Ahmed Abo El-Yazed Abd El Hafez

Assistant Prof. of Vegetable Crops, Dep. of Horticulture, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mohamed Rashad Omarah

Senior Researcher Emeritus of Vegetable Crops, Horticulture Research Institute, Agriculture Research Center

ABSTRACT

Amany Attia Abd ElLatif Attia. Effect of Modified Atmosphere Storage on Keeping Quality of Strawberry Fruits and Transplants. Unpublished Ph. D. Dissertation, Ain Shams University, Faculty of Agriculture, Department of Horticulture, 2005.

The present investigation included two experiments to study the effect of modified atmosphere storage on keeping quality and storability of Sweet Charlie strawberry fruits. The first experiment was carried out at Zein El Dien Strawberry Export Farms, Katta, Giza Governorate during the two successive seasons of 2001-2002 and 2002- 2003. Fruits were harvested at three quarter color stage, Pre cooled directly and wrapped with polyethylene. Then subjected to six treatments of carbon dioxide concentrations viz., control (unwrapped), MAP (wrapped), 10,15,20, and 25% CO₂. The experimental design was complete randomize design with three replicates. Cartons were placed in a controlled temperature room at 0°C and relative humidity of 95% for three weeks. Quality characteristics were recorded weekly. In the second experiment, the transplants were treated with calcium nitrate (13% Ca) with three different rates i.e. control (without calcium), 100 and 200 Kg/fed of calcium nitrate as fertigation in the nursery. Calcium treated transplants were subjected to five modified atmosphere treatments 0, 10, 20, 30, and 40 % CO₂ before cold storage. Crown diameter, number of leaves and roots per plant, Ca % in roots and crowns, decay percent, early and total yield were recorded. Results of the first experiment indicated that, after three weeks of cold storage, 10 % of CO₂ showed the lowest value of color development without significant difference as compared with 20% CO₂. Significant

differences in gloss were detected between MAP and 10% CO₂ enriched atmosphere in the two tested seasons. After three weeks of cold storage, CO₂ at 10 or 15% showed the best calyx color (light green) in the two tested years. Fruits treated with 10% of CO₂ showed no decay after one week in the two tested seasons. After two weeks of cold storage, significant increment in fruit firmness was found to those treated with 15 % CO₂ as compared with all tested treatments. On the other hand, after three weeks, significant decrements were noticed for fruits treated with 20% and 25% as compared with 10% CO₂. After two weeks of storage, 15% CO₂ treatment showed the highest values of ascorbic acid content without significant difference between it and 10% in the second season. Control treatment was decayed before one week. Weight loss after one week of storage showed a decline in all modified atmosphere treatments when compared with MAP in the two tested seasons. Results also indicated that increasing CO₂ concentration around strawberry fruits decreased total sugars content. However, MAP and those treated with 10% CO₂ showed significant increment in total sugars as compared with those treated with 15% and 20% CO₂ in both seasons. The results of the second experiment indicate that increasing the rate of calcium application during the transplant growth period (26 kg/fed) and carbon dioxide concentration (40%) around transplants during the cold storage resulted in significant decrements in transplant decay, infection percentage, disease severity of root and crowns. There was a positive relationship between calcium nutrition and early yield. Moreover, the highest calcium rate gave the highest total yield.

Key Words: Strawberry, Transplants, Calcium, Modified atmosphere, CO₂, Decay, Fruit firmness, Yield.

ACKNOWLEDGEMENT

I would like to express my deepest thanks and gratitude to **Prof. Dr. Ahmed Mahmoud El-Gizawy, Prof. of Vegetable Crops and Vice Dean of the Faculty of Agriculture, Ain Shams University** for suggesting the current study, his supervision, valuable help, continuous support and keen revision of the manuscript

My deepest and sincere gratitude to **Dr. Ahmed Abo El-Yazed Abd El-Hafez**, **Lecturer of Vegetable Crops**, **Faculty of Agriculture**, **Ain Shams University** for his supervision and great help during carrying out and preparation of this work.

I would also like to thank Prof. Dr.Mohamed Rashad Omarah, Emeritus Senior Researcher, Horticulture Research Institute, Agriculture Research Center for his supervision, great support during the preparation of this work and keen revision of the manuscript.

Also I would like to express my great thanks to **Dr. Yehia Khafagy, Senior Researcher of plant pathology, plant pathology Research Institute, Agriculture Research Center** for his valuable help during preparation of this work.

Great thanks also to **Mr. Khaled Zein El- Dien** for facilitating precooling and cold storage rooms in his strawberry export farm.

My sincere thanks to my family and all staff members of Strawberry and Non-Traditional Crops Center, Ain Shams University, for their useful cooperation.

تأثير التخزين في جو هوائي معدل علي الاحتفاظ بجوده ثمار و شتلات الفراولة

رسالة مقدمة من أمانى عطية عبد اللطيف عطية

بكالوريوس علوم زراعية (بساتين)، جامعة عين شمس ، 1986 ماجستير علوم زراعية (خضر)، جامعة عين شمس، 1998

للحصول علي درجة دكتور فلسفة في العلوم الزراعية (خضر)

قسم البساتين ـ كلية الزراعة جامعة عين شمس

صفحة الموافقة علي الرسالة

تأثير التخزين في جو هوائي معدل علي الاحتفاظ بجودة ثمار وشتلات الفراولة

رسالة مقدمة من أماني عطية عبد اللطيف عطية

بكالوريوس علوم زراعية (بساتين) ، جامعة عين شمس، 1986 ماجستير علوم زراعية (خضر) ، جامعة عين شمس، 1998

للحصول علي درجة دكتور فلسفة في العلوم الزراعية (خضر)

(خضر)	الموافقة عليها:	تمت مناقشة الرسالة و جنة:	وقد الل
نامعة الأزهر	 ، كلية الزراعة ، ج	شامل أحمد شنن أستاذ الخضر المتفرغ	.د.
امعة عين شمس	ا لمنعم كلية الزراعة ، ج	عبد الرحيم شرف عبد أستاذ الخضر المتفرغ،	.د.
ن شمس	راعة ، جامعة عير	أحمد محمود الجيزاوي أستاذ الخضر، كلية الز	.د.

تاريخ المناقشة 13 / 8 / 2005

جامعة عين شمس كلية الزراعة

رسالة دكتوراه

أسم الطالبة : أماني عطية عبد اللطيف عطية

عنوان الرسالة: تأثير التخزين في جو هوائي معدل على الاحتفاظ بجودة ثمار وشتلات الفراولة

أسم الدرجة : درجة دكتور فلسفة في العلوم الزراعية (خضر)

لجنة الإشراف

أ.د. أحمد محمود الجيزاوى أستاذ الخضر، قسم البساتين ، كلية الزراعة،

جامعة عين شمس

د. أحمد أبو اليزيد عبد الحافظ مدرس الخضر، قسم البساتين، كلية الزراعة،

جامعة عين شمس

رئيس بحوث متفرغ، معهد بحوث البساتين، مركز البحوث الزراعية

أ.د محمد رشاد عمارة

تاريخ البحث 18 / 9 / 2000

الدر إسات العليا

أجيزت الرسالة بتاريخ 2005 / 8 / 13

ختم الإجازة

موافقة مجلس الجامعة

موافقة مجلس الكلية

2005 / /

2005/ /

CONTENTS

		Page
1-INTRODUCTION	1	Ü
2-REVIEW OF LITERATURE	3	
2.1. Effect of modified atmosphere on some fruit		
physical and chemical characteristics	3	
2.1.1. Fruit color	3	
2.1.2. Fruit calyx Color	4	
2.1.3. Fruit decay	4	
2.1.4. Fruit firmness	7	
2.1.5. Soluble solids content	8	
2.1.6. Fruit juice pH	9	
2.1.7.Ascorbic acid	9	
2.1.8.Total titratable acidity	10	
2.1.9.Weight loss	10	
2.1.10.Total sugars	11	
2.1.11.Effect of modified atmosphere packaging on		
strawberry fruit characteristics	12	
2.2. Effect of calcium application on some transplant		
characteristics	13	
2.2.1. Transplant decay	13	
2.2.2.Effect of modified atmosphere on transplant		
decay and plant growth	14	
2.2.3.Effect of calcium on transplant decay and plant		
growth	14	
3-MATERIALS AND METHODS	15	
3.1 The first experiment	15	
3.1.1. Physical characteristics	16	
3.1.1.1. Fruit external color	16	
3.1.1.2. Fruit gloss	16	
3.1.1.3. Fruit calyx color	16	
3.1.1.4. Fruit decay	16	
3.1.1.5. Fruit firmness	16	
3.1.1.6. Weight loss	17	

3.1.2.1. pH of juice	17
3.1.2.2. Total titratable acidity	17
3.1.2.3. Total soluble solids	17
3.1.2.4. Total soluble /acidity ratio	17
3.1.2.5. Ascorbic acid content	17
3.1.2.6. Total sugars	18
3.1.2.7. Statistical analysis	18
3.2 The second experiment	18
3.2.1. Transplant characters	19
3.2.2. Transplant decay percent after cold storage	19
· · · · · · · · · · · · · · · · · · ·	20
	20
	20
· · ·	20
· · · · · · · · · · · · · · · · · · ·	21
4.1 The first experiment	21
	21
4.1.1.1. Color degree	21
	25
4.1.1.3. Calyx color	28
	31
	34
4.1.1.6. Total soluble solids (TSS)	35
	37
4.1.1.8. Ascorbic acid content	39
, ,	43
4.1.1.10. Weight loss	44
4.1.1.11.Total soluble solids / titratable acidity	
ratio	48
4.1.1.12. Total sugars	49
4.2. The second experiment	53
4.2.1.Effect of calcium application on some	
transplant characteristics	53
4.2.2. Effect of calcium application on postharvest	
pathogens of strawberry transplants before cold	
storage	56

percent and disease severity in roots and	
crowns of strawberry transplants before	
storage	57
4.2.4. Effect of calcium application and CO ₂ % during	
storage on decay percentage of	
transplant	60
4.2.5. Effect of calcium application and CO ₂ % on	
the infection percent and disease severity	
after cold storage	60
4.2.6. Early and total yield	61
5. SUMMARY AND CONCLUSION	72
6. REFERENCES	78
7. ARABIC SUMMARY	

LIST OF TABLES

		Page
Table	(1): Effect of modified atmosphere treatments on color scores of Sweet Charlie strawberry	
Table	cultivar	22
Table	strawberry cultivar(3): Effect of modified atmosphere treatments on	24
Table	gloss of Sweet Charlie strawberry cultivar (4): Effect of modified atmosphere treatments on calyx color of Sweet Charlie strawberry	25
Table	cultivar	28
Table	cultivar	32
Table	cultivar	35
Table	strawberry cultivar	37
Table	cultivar(9): Effect of modified atmosphere treatments on ascorbic acid content of Sweet Charlie	39
Table	strawberry cultivar(10): Effect of modified atmosphere treatments on	41
	titratable acidity of Sweet Charlie strawberry cultivar	44

Table (11): Effect of modified atmosphere treatments on	
weight loss of Sweet Charlie strawberry cultivar	46
Table (12): Effect of modified atmosphere treatments on TSS/Acid ratio of Sweet Charlie strawberry	10
Table (13): Effect of modified atmosphere treatments on total sugars of Sweet Charlie strawberry	49
Table (14): Effect of calcium application on some transplants characteristics before cold	51
storage Table (15): Effect of calcium application on postharvest pathogens of Strawberry transplants before	53
Table (16): Effect of calcium application and modified atmosphere on infection percent and disease severity in roots and crowns of strawberry transplants before cold	56
storage	57
transplants	61
strawberry transplants	65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69
strawberry	69

LIST OF FIGURES

	<u>Page</u>
Fig. (1): Effect of modified atmosphere treatments on color degree of Sweet Charlie strawberry cultivar	
Fig. (2) Effect of modified atmosphere treatments on	23
gloss of Sweet Charlie strawberry cultivar	25
Fig. (3): Effect of modified atmosphere treatments on calyx color of Sweet Charlie strawberry	•
cultivar Fig. (4): Effect of modified atmosphere treatments on fruit decay of Sweet Charlie strawberry	29
cultivar	33
Fig. (5): Effect of modified atmosphere treatments on fruit firmness of Sweet Charlie strawberry	
cultivar	36
Fig. (6): Effect of modified atmosphere treatments on total soluble solids (TSS) of Sweet Charlie	20
Fig. (7): Effect of modified atmosphere treatments on initial planets of Sweet Charlie atrawbarry	38
juice pH of Sweet Charlie strawberry cultivar	40
Fig. (8): Effect of modified atmosphere treatments on ascorbic acid content of Sweet Charlie	
strawberry cultivar Fig. (9): Effect of modified atmosphere treatments on	42
titratable acidity of Sweet Charlie strawberry	
cultivar	45
Fig. (10): Effect of modified atmosphere treatments on weight loss of Sweet Charlie strawberry fruits	
cultivar	47
Fig. (11): Effect of modified atmosphere on TSS/Acid.	50
ratio of Sweet Charlie strawberry cultivar	50
Fig. (12): Effect of modified atmosphere treatments on	
total sugars of Sweet Charlie strawberry fruits	52
	~ ~