DETECTION OF HIGH-LEVEL AMINOGLYCOSIDE RESISTANCE AND REDUCED SUSCEPTIBILITY TO VANCOMYCIN AMONG ENTEROCOCCAL CLINICAL ISOLATES

Thesis

Submitted for Fulfillment of the Master Degree in Medical Microbiology and Immunology

 \mathcal{B}_y

Pakinam Reda Hamzawy (M.B.; B.Ch.)

Supervised by

Prof. Hala Mohamed Safouh

Professor of Medical Microbiology and Immunology Faculty of Medicine, Cairo University

Prof. Manal Saad Diab

Professor of Medical Microbiology Theodor Bilharz Research Institute

Dr. Alaa Mohamed Reda Awad

Lecturer of Medical Microbiology and Immunology, Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2015

Dedication

I would like to dedicate this work to my father, for whom I owe a lot as he always used to say my greatest investment is my children.

May he always rest in peace and be forever proud of me.

Acknowledgement

First of all greatest thanks to Allah

I wish to express my deepest gratitude and sincere appreciation to Prof. Hala Mohamed Safouh, Professor of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, for her ultimate direction, continuous guidance and great assistance to facilitate completion of this work.

I am especially indebted and deeply grateful to my Prof. Manal Saad Diab, Professor of Medical Microbiology and Immunology, Theodor Bilharz Research Institute, for her continuous help, ultimate cooperation and indispensable directions. She patiently supervised every bit of detail in all parts of this work and I learned a lot from her.

I would like to express my deepest gratitude and sincere thanks to Dr. Alaa Mohamed Reda Awad, Lecturer of Medical Microbiology and Immunology Faculty of Medicine, Cairo University, for her great help, meticulous supervision, tremendous guidance, heartfelt encouragement and patience all throughout the completion of this work.

I wish to express my sincere gratitude to Prof. Inas El-Defrawi, Professor of Medical Microbiology and Immunology, Former Head of Microbiology Department, Theodor Bilharz Research Institute, for her great help, kind guidance and assistance throughout the work and for facilitating all the means for availability of work kits and material.

I would like to thank all staff members of Microbiology, Theodor Bilharz Research Institute, for their generous help and encouragement.

To my wonderful mother, who scarificed a good deal of her precious time to help me and always kept me in her prayers, I'll always be grateful and loving.

I wish to express my deepest gratitude, sincere love and appreciation to my sweet husband, for his continuous support, help, loving sacrifice and empowering encouragement that helped me all throughout my completion of this work.

I want to give my sincere thanks and appreciation to my family for their constant prayers and wishes to achieve my work.

Pakinam Reda Hamzawy 2015

ABSTRACT

Enterococci are Gram-positive bacteria that have become an important clinical pathogen and are considered as the second leading cause of healthcare-associated bacteremia with E. faecalis and E. faecium representing the two most common enterococcal species comprising about 5 to 15% of cases of infectious endocarditis, as well as UTIs followed by intra-abdominal, pelvic and soft tissue infections. Enterococci have the capacity to acquire resistance to antibiotics including high-level resistance to aminoglycosides (HLAR) and glycopeptides including VRE. This evolution of anti-microbial resistance in enterococci poses enormous challenges for treatment especially when faced with patients with severe infections. Antibiotics such as linezolid, daptomycin and tigecycline may offer alternative solution for treatment of VRE infections. In the current study we aimed to identify the enterococcal species, determine their antibiotic sensitivity, including HLAR, low susceptibility to vancomycin and detect βlactamase production. In addition we aimed to evaluate therapeutic options for MDR enterococci namely linezolid and tigecycline. Fifty enterococcal species were isolated, E. faecalis (38/50, 76%) was predominant over E. faecium (12/50, 24%). Among the 50 studied enterococcal isolates, HLSR and HLGR represented 56% and 46%, respectively, while vancomycin resistance was detected in (2/12, 16.7%) of isolated E. faecium. None were β-lactamase producer. Twenty five (50%) out of the 50 enterococcal isolates were MDR, which were all sensitive to both linezolid and tigecycline.

Key words: E. faecalis, E. faecium, HLAR and VRE.

LIST OF CONTENTS

	Pages
LIST OF TABLES	I
LIST OF FIGURES	II-III
LIST OF ABBREVIATION	IV-V
INTRODUCTION	1
AIM OF WORK	3
REVIEW OF LITERATURE:	4
Historical perspective	4
Taxonomy, Genus Description and Culture Characteristics	6
Natural habitats and Epidemiology	9
Enterococcal Genomes	10
Virulence factors of Enterococci	14
Enterococci Associated Infections	19
Laboratory Diagnosis of Enterococcal Infection	21
Prevention of Enterococcal infections	27
Treatment of Enterococcal Infections	28
Antimicrobial Resistance Mechanisms of Enterococci	33
High-Level Aminoglycoside Resistance and reduced susceptibility to vancomycin	40
MATERIAL AND METHODS	52
RESULTS	62
DISCUSSION	77
CONCLUSION	89
RECOMMENDATIONS	90
SUMMARY	91
REFRENCES	95
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Title	Page No.
Table 1:	Phenotypic identification of Enterococcus species	25-26
Table 2:	Inhibition zone diameters of tested antibiotics	58
Table 3:	Minimum Inhibitory Concentration values of tested antibiotics	60
Table 4:	Distribution of <i>Enterococcus</i> species isolates according to specimen type	63
Table 5:	Distribution of the <i>Enterococcus</i> species isolates according to specimen origin	64
Table 6:	Susceptibility patterns of <i>Enterococcus</i> species isolates recovered from blood and pus specimens by the disc diffusion method	65
Table 7:	Susceptibility patterns of <i>Enterococcus</i> species isolates recovered from urine samples by the disc diffusion method	67
Table 8:	The HLAR pattern of the studied Enterococcus isolates	68
Table 9:	The HLAR pattern of the studied Enterococcus species isolates	68
Table 10:	The MIC (μ g/ml) of streptomycin and gentamicin of <i>E. faecalis</i> and <i>E. faecium</i> by E-test method.	71
Table 11:	The MIC of vancomycin against enterococcal isolates	72
Table 12:	The MIC of tigecycline and linezolid against MDR <i>Enterococcus</i> species isolates by E-test method	74

LIST OF FIGURES

Fig. No.	Title	Page No.
Fig. 1:	The 16S rRNA dendrogram of phylogenetic position of <i>Enterococcus</i> species	7
Fig. 2:	Dendrogram of the genus Enterococcus	8
Fig. 3:	Enterococcus faecalis V583, complete genome	12
Fig. 4:	Model of the enterococcal cell wall. The peptidoglycan layer is depicted above the lipid bilayer with membrane bound lipoproteins and lipoteichoic acid	13
Fig. 5:	Different resistant mechanisms against a number of antibiotics	34
Fig. 6:	Distribution of Enterococcus species isolates	62
Fig. 7:	API Strep 20 showing identification of an <i>E. faecalis</i> isolate	62
Fig. 8:	API Strep 20 showing identification of an E. faecium isolate	62
Fig. 9:	Distribution of the enterococcal isolates according to specimen type	63
Fig. 10:	Antibiotic resistance profile of the studied <i>Enterococcus</i> species isolated from blood and pus specimens	66
Fig. 11:	Antibiotic resistance profile of the studied <i>Enterococcus</i> species isolated from urine samples	67
Fig. 12:	The HLAR profile of the studied <i>Enterococcus</i> species isolates	69
Fig. 13:	An <i>E. faecalis</i> isolate showing HLAR to streptomycin (300 μ g) and gentamicin (120 μ g)	69
Fig. 14:	An <i>E. faecium</i> isolate showing HLAR to streptomycin (300 μ g) and gentamicin (120 μ g), but a clear zone of inhibition (19mm) is seen around vancomycin (30 μ g)	70

Fig. 15:	An <i>E. faecium</i> isolate resistant to streptomycin and gentamicin with MIC values >1024 µg/ml and >256 µg/ml, respectively	71
Fig. 16:	An <i>E. faecalis</i> isolate resistant to streptomycin and gentamicin with MIC values $>1024\mu g/ml$ and $>256~\mu g/ml$, respectively	72
Fig. 17:	An <i>E. faecalis</i> isolate with intermediate resistance to vancomycin (MIC= $12 \mu g/ml$)	73
Fig. 18:	An <i>E. faecium</i> isolate showing resistance to vancomycin by disc and E-test (MIC value of $> 256 \ \mu g/ml$)	73
Fig. 19:	An <i>E. faecium</i> isolate sensitive to tigecycline by disc diffusion (Z=30mm) and by E-test (MIC=0.032µg/ml)	75
Fig. 20:	An <i>E. faecium</i> isolate sensitive to linezolid by disc diffusion (Z=30mm) and by E-test (MIC=2µg/ml)	75
Fig. 21:	An <i>E. faecium</i> isolate intermediately sensitive to linezolid by disc diffusion (Z=22mm) and by E-test (MIC=4µg/ml)	76

LIST OF ABBREVIATIONS

AACs Acetyltransferases

Ace Adhesin of collagen from enterococci

AMEs Aminoglycoside-modifying enzymes

ANTs Nucleotidyltransferases

APHs Phosphotransferases

API Analytical profile index

ARA Arabinose

ARG Arginine

AS Aggregation substance

ATP Adenosine triphosphate

BE-test Bile-Esculin test

CDC Centers for Disease Control and Prevention

CFR Chloramphenicol-florfenicol resistance

CFU Colony forming unit

ChromID Chromogenic ID medium (BioMérieux)

CLED Cysteine lactose electrolyte deficient

CLSI Clinical and laboratory standard institute

D- Lac D-Lactate

D-Ala D-Alanine

DNA Deoxyribonucleic acid

D-Ser D-Serine

Esp Enterococcal surface protein

EUCAST European Committee on Antimicrobial Susceptibility Testing

FDA United States food and drug administration

GelE Gelatinase

gelE Gelatinase gene

GI tract Gastro-Intestinal tract

GRE Glycopeptide resistant enterococci

HLAR High level aminoglycoside resistance

HLG High level gentamicin

HLGR High level gentamicin resistance

HLS High level streptomycin

HLSR High level streptomycin resistance

Hyl Hyaluronidase gene

ICU Intensive Care Unit

IS Insertion element

kb kilobase

LAPase Leucine amino-peptidase

MAN Mannitol

MDR Multi-drug resistance

MGP Methyl α-D-glucopyranoside

MHA Muller Hinton Agar

MIC Minimum inhibitory concentration

MOT Motility

MSCRAMM Ace Microbial surface component recognizing adhesive matrix

molecule adhesin of collagen from enterococci

MSCRAMM Microbial surface components recognizing adhesive matrix

molecules

MsrC Macrolide-streptogramin resistance protein

NaCl Sodium chloride

NCCLS National committee for clinical laboratory standards

PAI Pathogenicity islands

PBPs Penicillin binding proteins

PIG Pigment

PYR L-pyrrolidonyl-beta-naphthylamide

PYRase Pyrrolidonyl arylamidase

PYU Pyruvate

RAF Raffinose

rRNA Ribosomal Ribonucleic acid

SBL Sorbitol

SOR Sorbose

sprE Serine protease gene

SUC Sucrose

TBRI Theodor Bilharz Research Institute

TEL Tellurite

Tn Transposon

UTI Urinary tract infection

Vat Virginia-mycin acetyltransferase

Vgb Virginia-mycin B lyase

VRE Vancomycin resistant enterococci

VSE Vancomycin-sensitive enterococci

INTRODUCTION

Enterococcus were classified as group D Streptococcus until 1984 when genomic DNA analysis placed them in their own genus (Schleifer and Kilpper-Balz, 1984; Dalal et al., 2008). They have long been regarded as harmless commensals of the gastrointestinal tract of a wide variety of hosts; humans and other mammals, birds, reptiles and insects. However, they have emerged in the 1970s as one of the leading causes of multidrug-resistant hospital-acquired infections and have gained increasing clinical importance through the 1990s due to anti-microbial misuse patterns (Murray, 1998; Donskey et al., 2000; Lebreton et al., 2014).

The most common type of enterococcal infections occurs in the urinary tract; nevertheless enterococci have also been recovered from cultures of intra-abdominal, pelvic, and soft tissue infections and have become the second leading cause of healthcare-associated bacteremia (*Helmi et al.*, 2008). The genus now includes over forty distinct species of enterococci (*Lebreton et al.*, 2014). *Enterococcus faecalis* is the most common and causes 85-90% of enterococcal infections, while *Enterococcus faecium* causes 5-10% (*Hidron et al.*, 2008; *Fisher and Phillips*, 2009).

The ability of enterococci to colonize the gastrointestinal tract of hospitalized humans for long periods is a crucial factor that influences the development of drug resistance (*Moellering*, 1992). Such resistance has resulted in a major decrease in therapeutic options, because the majority of enterococcal isolates have a remarkable ability to adapt to exposure to antibiotics. They show intrinsic resistance to cephalosporins, trimethoprim-sulfamethoxazole and low-level aminoglycosides (*Adhikari*, 2010).