Modified Arthroereisis in Treatment of Flexible Flatfoot

Thesis

Submitted for partial fulfillment of

M.D. Degree in Orthopaedic Surgery

By

Osama Ramadan Abd-Elhamid Kardous

M.B.B.Ch., M. Sc., MRCS

Supervised by

Prof. Dr. Hassan Magdy Elbarbary

Prof. of Orthopaedic Surgery, Cairo University

Prof.Dr. Ali M. Reda Mansour

Prof. of Orthopaedic Surgery, Cairo University

Dr. Mohamed Tag El-Deen Mohamed El-Emary

Lecturer of Orthopaedic Surgery, Cairo University.

Faculty of Medicine
Cairo University
2016

Acknowledgement

I wish to express my deepest gratitude to Prof. Dr. Hassan Magdy Elbarbary, Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University for his kind supervision and valuable advice, and also his great support with valuable effort for this work.

My special thanks and deepest appreciation to Prof. Dr. Ali M. Reda Mansour, Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University, who generously offered a lot of his precious time and interest. His encouragement and guidance were a real help to accomplish my task. May God bless him.

I am also deeply grateful to Dr. Mohamed Tag El-Deen Mohamed El-Emary, Lecturer of Orthopedic Surgery, Faculty of Medicine, Cairo University for his kind supervision, indispensable remarks and continuous support, assistance during all stages of this work and he offered me most of his time and effort as well as deep experience.

Particular thanks must also be recorded to Dr. Mostafa A.Maaboud Azab, Lecturer of Orthopedic Surgery, Faculty of Medicine, Cairo University for his support and encouragement over years both in terms of completing this study, professional support and constructive critique.

I would like to express the deepest appreciation to Dr. Rawhi Helmi Yassin, M.D. Consultant of Orthopaedic Surgery, Saudi German Hospital, Jeddah-K.S.A. who introduced and modified this technique 25 years ago, and who has the attitude and substance of guidance, he continually and convincingly conveyed a spirit of excitement in regard to teaching and research, without his guidance and help this study would not have been possible.

Lastly, I would like to thank all the Staff Members of the **Department of Orthopedic Surgery** in **Cairo University Mounira Pediatric Hospital (Abou El Reeshe)** and **Saudi German Hospital-Jeddah-K.S.A.** for their great help and kind support.

List of Abbreviations

- ACFAS → American College of Foot and Ankle Surgeons Scoring Scales
- AP \rightarrow Antero-posterior view in x-ray
- ASI → Angled Subtalar Implant
- CORA → Center of rotation of angulation
- CSI→ Conical Subtalar Implant
- $CT \rightarrow Computed tomography$
- DSI → Domed Subtalar Implant
- FFF \rightarrow Flexible flat foot
- FFF-STA → Fexible flatfoot with short tendo-Achilles
- LCL → Lateral collateral ligament
- LSI → Lundeen Subtalar Implant
- MBA → Maxwell Brancheau arthroereisis implant
- MCL → Medial collateral ligament
- MRI → Magnetic resonance imaging
- MTP → Metatarso-phalengeal joints
- PLLA → Poly-L lactic acid
- PPV → Pesplanovalgus
- ROM → Range of motion
- STA-peg → Subtalar Arthroeresis- peg

- STS → Subtalar Spacer
- $TMT \rightarrow Tarso-metatarsal joints$
- TP \rightarrow Tibialis posterior
- UHMWP → Ultra-high-molecular-weight polyethylene
- $VAS \rightarrow Visual$ analog scale for pain

LIST OF FIGURES AND TABLES

List of Figures

Figure	Title	Page
Number		Number
Eig 1	Functional segments of bones of the foot	27
Fig. 1	Tunctional segments of bones of the foot	27
Fig. 2	Medial surface of the talus bone.	28
Fig. 3	Superior surface of the calcaneus bone.	29
Fig. 4	Medial view of the talus and calcaneal bones.	30
Fig. 5	Anterior view of the talus and calcaneus bones	30
Fig. 6	Lateral view of the foot, showing the talus sitting	31
	on the calcaneus (the subtalar joint). The sinus	
	tarsi is the lateral opening of the tarsal canal	
Fig. 7	Medial view of the foot, showing the talus sitting	32
	on the calcaneus (the subtalar joint)	
Fig. 8	Medial ligaments of the posterior ankle/foot	34
_	complex.	
Fig. 9	Lateral ligaments of the posterior ankle/foot	35
	complex.	
Fig. 10	The superior and inferior extensor retinacula; the	35
_	superior and inferior peroneal retinacula.	
Fig. 11	The ligaments of the subtalar joint (in a posterior	36
	cross-sectional view).	
Fig. 12	Axis of the subtalar joint (A) inclined up from the	38
	transverse plane approximately 42^{0} and (B)	
	inclined medially from an A-P axis approximately	
	16^{o}	
Fig. 13	"Cardinal" axes for the motions of the ankle/foot	39
	complex	
Fig. 14	Non-weight-bearing motion at the right subtalar	40
-	joint. A. Pronation of the subtalar joint is	
	observable as eversion (valgus movement) of the	

	calcaneus, although the coupled motions of	
	dorsiflexion and abduction of the calcaneus must	
	also be occurring. B. Supination of the subtalar	
	joint is observable as inversion (varus movement)	
	of the calcaneus, although the coupled motions of	
	plantarflexion and adduction of the calcaneus	
	must also be occurring.	
Fig. 15	A. Dorsiflexion of the head of the talus during	43
	weight-bearing subtalar supination slides the body	
	of the talus posteriorly within the tibiofibular	
	mortise. B. Abduction of the head of the talus	
	during weight-bearing subtalar supination rotates	
	the body of the talus laterally, potentially taking	
	the tibiofibular mortise along with it.	
Fig. 16	The term valgus (or calcaneovalgus) refers to an	45
	increase in the medial angle between the	
	calcaneus and posterior leg. The term varus (or	
	calcaneovarus) refers to an decrease in the medial	
	angle between the calcaneus and posterior leg.	
Fig. 17	The talonavicular joint and calcaneocuboid joint	46
	form a compound joint known as the transverse	
	tarsal joint line that transects the foot.	
Fig. 18	With the talus removed, this superior view shows	48
	the concavity ("socket") formed by the navicular	
	bone anteriorly, the deltoid ligament medially, the	
	medial band of the bifurcate ligament laterally,	
	and the spring (plantar calcaneonavicular)	
	ligament inferiorly	
Fig. 19	The longitudinal axis of the transverse tarsal joint	50
	is (A) inclined 15° superiorly from the transverse	
	plane and (B) inclined 9^{O} medially from the	
	sagittal plane.	
Fig. 20	The oblique axis of the transverse tarsal joint is	50
	(A) inclined 57° from the sagittal plane and (B)	

	inclined 52° superiorly from the transverse plane.	
Fig. 21	Inman and Mann's mechanical model. With pronation occurring at the subtalar joint through medial rotation of the leg, the transverse tarsal joint is free to (A) supinate slightly to maintain the relatively fixed position of the forefoot segment; (B) pronate slightly as occurs in normal standing; or (C) supinate substantially to maintain appropriate weight-bearing of the forefoot segment on uneven terrain.	52
Fig. 22	Inman and Mann's mechanical model. With supination occurring at the subtalar joint through lateral rotation of the leg, the transverse tarsal joint has limited ability to pronate to maintain the relatively fixed position of the forefoot segment (A); will begin to supinate with a greater range of subtalar supination and lateral rotation of the leg (B); or will fully supinate along with a fully supinated subtalar joint and maximal lateral rotation of the superimposed leg (C).	53
Fig. 23	The longitudinal arch viewed from (A) the lateral side of the foot is low in comparison with the view from (B) the medial side of the foot.	54
Fig. 24	The transverse arch. A. At the level of the anterior tarsals. B. At the level of the middle of the metatarsals. CU, cuboid; LC, lateral cuneiform; MC, middle cuneiform; MeC, medial cuneiform.	55
Fig. 25	The medial longitudinal arch with its associated ligamentous support, including the plantar aponeurosis. The more laterally located short plantar ligament would not ordinarily be seen in a medial view but is shown as if projected "through" the foot	56
Fig. 26	The foot as a truss and tie-rod, with the calcaneus	58

	and talus serving as the posterior strut, the	
	remainder of the tarsals and the metatarsals	
	serving as the anterior strut, and the plantar	
	aponeurosis serving as a tensed tie-rod. Weighting	
	the foot will compress the struts and create	
	additional tension in the tie-rod.	
Fig. 27	Elevation of the arch with toe extension occurs as	60
	the plantar aponeurosis winds around the	
	metatarsal heads and draws the two ends of the	
	aponeurosis toward each other.	
Fig. 28	In pes planus ("flat foot"), there is displacement	63
	of the talus anteriorly, medially, and inferiorly;	
	depression and pronation of the calcaneus; and	
	depression of the navicular bone.	
Fig. 29	In the normal foot, the medial malleolus, the	64
	tuberosity of the navicular bone, and the head of	
	the first metatarsal lie in a straight line called the	
	Feiss line.	
Fig. 30	Flexible flatfeet. a Convex medial border with	68
	midfoot sag. b Valgus hindfoot	
Fig. 31	Jack's toe-raising test. An arch is created in a	69
	flexible flatfoot (FFF) by the windlass action of the	
	great toe and plantar fascia	
Fig. 32	Weight-bearing left FFF. b In toe-standing, heel	69
	valgus converts to varus and the longitudinal arch	
	can be seen	
Fig. 33	Standing lateral radiograph showing three fairly	71
	reliable angular measurements: the calcaneal	
	pitch (CP), talo-horizontal angle (T-H), and	
	Meary's talus—first metatarsal angle (T-1MT)	
Fig. 34	Standing radiographs of a flatfoot showing talus	72
	and first metatarsal axis lines crossing at the	
	center of rotation of angulation (CORA) in the	
	center of the head of the talus, indicating a single	

	deformity at the talo-navicular joint. a	
	Anteroposterior view. b Lateral view	
Fig. 35	Standing radiographs of a skewfoot showing two	73
	opposite direction angular deformities between the	
	talus and the first metatarsal, making the CORA	
	for those bones meaningless. a Anteroposterior	
	view. b Lateral view	
Fig. 36	Calcaneal lengthening osteotomy	76
Fig. 37	Maxwell-Brancheau Arthroereisis (MBA) Implant.	79
Fig. 38	Flake-Austin Technique for STA-peg implant.	80
Fig. 39	The Sgarlato "mushroom" implant (designed by	80
6. 22	Futura Biomedical, Vista, CA)	
Fig. 40	Biomechanical Classification of Subtalar	81
8.	Arthroereisis Implants	
	A. Self-Locking Wedges B. Axis-Altering Devices.	
	C. Direct-Impact Devices.	
Fig. 41	Giannini Non-bioresorbable implant	85
Fig. 42	Sex distribution of patient operated	91
Fig. 43	Skin incision and dissection of subcutaneous tissue	98
Fig. 44	Direction f drilling proximal cortex of calceneus	98
8	bone	
Fig. 45	Direction of screw placement	99
Fig. 46	Postoperative radiographs	99
Fig. 47	Method of Making A Foot Print	105
Fig. 48	The isthmus of the foot sole(b) is 1/3 to ½ of the	105
	metatarsal line(a).	
Fig. 49	Longitudinal axis of foot passing in 4th toe	106
Fig. 50	Unilateral and bilateral cases	109
Fig. 51	Sex distribution	110

Fig. 52	Side operated	110
Fig. 53	Chief complaint diagram	111
Fig. 54	History Taking Results	112
Fig. 55	Pain And Patient Satisfaction Distribution	117
Fig. 56	Mean Improvement In Angles	119
Fig. 57	Complications rate	122
Fig. 58	Preoperative (A) and postoperative (B) photos of case 1.	130
Fig. 59	Preoperative (A) and postoperative (B) heel alignment angle case 1.	130
Fig. 60	Preoperative (A) and postoperative (B) AP views of case 1.	131
Fig. 61	Preoperative lateral views of case 1.	132
Fig. 62	Postoperative lateral views of case 1.	133
Fig. 63	Preoperative (A) and postoperative (B) photos of case 2.	135
Fig. 64	Preoperative(A) and postoperative (B) heel alignment angle case 2.	136
Fig. 65	Preoperative (A) and postoperative (B) AP views of case 2.	137
Fig. 66	Preoperative lateral views of case 2.	138
Fig. 67	Postoperative lateral views of case 2.	139
Fig. 68	Preoperative (A) and postoperative(B) photos of case 3.	141
Fig. 69	Preoperative (A) and postoperative (B) heel alignment angle case 3.	142
Fig. 70	Preoperative (A) and postoperative (B) AP views of case 3.	143
Fig. 71	Preoperative lateral views of case 3.	144

Fig. 72	Postoperative lateral views of case 3.	145
Fig. 73	Preoperative (A) and postoperative (B) photos of case 4.	147
Fig. 74	Preoperative (A) and postoperative (B) heel alignment angle case 4.	148
Fig. 75	Preoperative (A) and postoperative (B) AP views of case 4.	149
Fig. 76	Preoperative lateral views of case 4.	150
Fig. 77	Postoperative lateral views of case 4.	151
Fig. 78	Preoperative (A) and postoperative (B) photos of case 5.	153
Fig. 79	Preoperative (A) and postoperative (B) heel alignment angle case 5.	154
Fig. 80	Preoperative (A) and postoperative (B) AP views of case 5.	155
Fig. 81	Preoperative lateral views of case 5.	156
Fig. 82	Postoperative lateral views of case 5.	157
Fig. 83	Wong-Baker FACES Pain Rating Scale	187

List of Tables

Table	Title	Page
Number		Number
Table 1	Summary of Coupled Subtalar Movement:	40
	Coupled Movements of Subtalar	
	Pronation/Supination	
Table 2	Complications of the subtalar arthroereisis	87
	implant procedure	
Table 3	Pain statistics	113
Table 4	Pain statistics	114
Table 5	Median test for pain	114
Table 6	Chi-Square for pain	114
Table 7	Arch elevation statistics	115
Table 8	Parents and patients satisfaction	117
Table 9	Heel position statistics	118
Table 10	Descriptive Statistics	119
Table 11	Paired Samples Correlations	120
Table 12	Paired Samples Test	120
Table 13	Functional score	121
Table 14	Median test for functional score	121
Table 15	Chi-Square for functional score	121
Table 16	Complications statistics	122
Table 17	Master Table	123
Table 18	Comparison of treatment of pediatric flexible	161
	flatfoot	
Table 19	Comparison between the current technique and	165
	different techniques of subtalar arthroeresis	

Table 20	Historical chronology of subtalar arthroeresis sinus tarsi implant	166
----------	--	-----

Index

Acknowledgment	2
List of abbreviations	4
List of figures and tables	.6
Aim of the work	18
Abstract	19
Review of literature	22
Introduction	22
Relevant anatomy and biomechanics	.25
Flat foot	62
Materials and methods	89
15	

Result	108
Case presentations	128
Discussion	158
Summary	188
References	191
Arabic summary	207