

Faculty of Women For Arts, Science and Education Home Economics Department

Thesis Submitted in requirement of Ph.D. in Science (Home Economics- Textile and Clothing Department)

Entitled

"Using Multi-functional finishing to add value for textile and their application"

By

Dina Mahmoud Nabih Tawila

Assistant lecturer in Home Economics Dep. Faculty of Women – Ain Shams University **Supervised by**

Prof. Dr. Wafaa. A. El-Sayed

Prof. of Textile Chemistry and Dyeing Faculty of Women Ain shams University

Dr. Naglaa Abdel Azeem Ameen

Lecturer of Textile and Clothing Faculty of Women Ain Shams University

Prof.Dr. Samiha M. Abo El-Ola

Prof. of Chemistry and Textile Technology Protein and Man Made Fibers Division National Research Center

Dr.Neveen Hussein Ibrahim Darwish

Ph.D. in Science (Home Economics-Clothing and Textiles) Faculty of Women Ain Shams University

2017

Acknowledgments

First and foremost © would like to express my special appreciation and thanks to my advisor **Prof**. **©r**. **Wafaa A. El-Sayed** Prof. of Cextile Chemistry and Dyeing, faculty of women, Ain Shams University for her guidance and all the useful discussions and brainstorming sessions that inspired me to become an independent researcher. Her deep insights helped me at various stages of my research. Also her advice on my research has been priceless. © would like to thank her for encouraging my research and for allowing me to grow as a research scientist.

T'd also like to give a heartfelt, special thanks to **Prof**. **Dr. Samiha M. Abo El-Ola**, Prof. of Chemistry and Cextile Cechnology. Protein and Man Made fibers Division, Cextile Research Division, National Research Center. Dispreciate all her contributions of time and ideas to make and complete my research. Dalso want to thank her for her brilliant comments and suggestions. And during the most difficult times when writing this thesis, she gave me the moral support and the freedom D needed to move on.

S am also grateful to **Tr. Neveen Hussein El- gindy**, Zh. in Bience (Home Economics Clothing and Cextiles), faculty of women, Ain
Shams University for continuous guidance to complete this work.

Also S would like to express my gratitude to my advisor Sr. Naglaa Abdel Azeem Ameen Recture of textile and clothing, faculty of Women, Ain Shams University, for her valuable supervision, efforts, support, continuous help and advice and for giving me a time that she spent with me through my study which made it a great learning experience.

S would like to thank **Or. Omnia Khairy**, **Or. Oshimaa Hassan** and **Alaa Ashraf** for their assistance in finalizing my thesis.

A special thanks to my family. Words cannot express how grateful am to my mother, father and my brothers **Mohamed, Abd-Alrahman** and my sister **Eman** and for all of the sacrifices that they have made on my behalf. Their prayer for me was what sustained me thus far.

Talso wish to give my heartfelt thanks to my love husband, MR.Ali Helmp, whose unconditional love,

Contents

List of Contents	Page
Contents	5
List of Figures	vii
List of Tables	5x
List of Schemes	xii
List of Designs and their Draping/Patterns	xiii
List of Designs and Products	xiv
Summary	XV
1. Introduction and literature review	1
1.1. Natural protein fibers	1
1.1.1. Wool fiber	1
1.1.1.1. Physical structure of wool fiber	2
1.1.1.2. Chemical structure of wool fiber	3
1.1.1.3. Fiber properties	4
1.1.1.3.1. Physical properties	4
1.1.1.3.2. Mechanical properties	5
1.1.1.3.3. Chemical properties	5
1.1.1.3.4. Thermal properties	6
1.1.1.3.5. Environmental properties	6
1.1.2. Silk fiber	6
1.1.2.1. Physical structure of silk fiber	7
1.1.2.2. Chemical structure of silk fiber	7
1.1.2.3. Fiber properties	8
1.1.2.3.1. Physical properties	8
1.1.2.3.2. Mechanical properties	8
1.1.2.3.3. Chemical properties	9
1.1.2.3.4. Thermal properties	9
1.1.2.3.5. Environmental properties	9
1.2. Dyeing	9
1.2.1. Acid dyes	10

1.2.1.1. Chemical structure of acid dyes	10
1.2.1.2. Mechanism of dyeing wool with acid	11
dyes	
1.2.1.3. Classification of acid dyes according to	12
dyeing characteristics	
1.3. Fabric coating	13
1.3.1. Polyurethane adhesive (resin)	14
1.3.1.1. Chemistry of polyurethane	15
1.3.1.1.1 Polyurethane structure	15
1.3.1.1.2. Basic Chemical Reactions	16
1.3.1.1.3. Raw Materials	17
1.3.1.2. Advantages and disadvantages of using	20
polyurethane coatings on textiles	
1.3.1.3. Polyurethane products	21
1.4. Antimicrobial textile	21
1.4.1. Requirements for antimicrobial finishing	22
1.4.2. Modes of antimicrobial action	23
1.4.3. Antimicrobial effects	24
1.4.4. Mechanism of antimicrobial action	24
1.4.5. Antimicrobial agents	25
1.4.5.1. Organic compounds	25
1.4.5.1.1. Halogenated phenols	25
1.4.5.1.2. Quaternary ammonium	26
compounds	
1.4.5.1.3. Polybiguanides	27
1.4.5.1.4. N-halamine compounds	28
1.4.5.1.5. Chitosan	29
1.4.5.1.6. Bioactive Plant-based	30
antimicrobial agents	
1.4.5.2. Inorganic compounds	31
1.4.5.2.1. Metals and metal oxides	31
1.4.5.2.1.1. Zinc Oxide (ZnO)	33
1.4.6. Evaluation of antimicrobial efficiency	34

1.5. Durable press finishing	34
1.5.1. Factors affecting wrinkling	36
1.5.2. The measurement of wrinkle and crease	37
recovery	
1.6. Ultraviolet (UV) protection and textiles	37
1.6.1. Ultraviolet radiation (UVR)	38
1.6.2. Mechanism of UV protection	39
1.6.3. Effects of structural parameters on UV	40
protection properties of textiles	
1.6.3.1. Effects of fiber types	40
1.6.3.2. Effects of fabric construction	40
1.6.3.3. Effects of dyes and colors	42
1.6.3.4. Effects of stretching, wetting and	42
laundering	
1.6.3.5. Effects of UV absorbers	43
1.6.4. Evaluation of UV protection finishes	43
1.7. Fashion design	44
1.7.1. Interrelationship between fashion and	44
textiles	
1.7.2. Aspects of fashion design	46
1.7.2.1. Functional design	46
1.7.2.1.1. Classification of functional clothing	47
1.7.2.2. Structural design	48
1.7.2.3. Aesthetic design	48
1.7.3. Pattern Making	48
1.7.3.1. Methods of Pattern Making	49
1.7.3.1.1. Paper Pattern Making (flat pattern	49
making)	
1.7.3.1.2. Draping	49
2. Aim of the work	51
3. Experimental work	53
3.1. Materials	
- · - · - · - · - · - · · - · · · · · ·	53 53
3.1.1. Fabrics	53
3.1.2 Chemicals	53

3.1.3. Microorganisms	53
3.1.4. Media	53
3.1.5. Dyes	53
3.2. Methods	54
3.2.1. Fabric scouring	54
3.2.2. Finishing technique	54
3.2.3. Dyeing	55
3.2.4. Tie and dye	55
3.3. Test methods	55
3.3.1. Wet crease recovery angle	55
3.3.2. Antibacterial properties	56
3.3.3. Durability test	56
3.3.4. Ultraviolet Protection Factor (UPF)	56
evaluation	
3.3.5. Scanning Electron Microscope (SEM) and	57
Electron Dispersion Emission X-ray (EDX)	
3.3.6. Physico-mechanical properties evaluation	57
3.3.6.1. The fabric stiffness	57
3.3.6.2. Tearing resistance	57
3.3.6.3. Tensile strength and elongation	57
3.3.6.4. Fabric air permeability	57
3.3.6.5. Fabric wettability properties	58
3.3.7. Color strength	58
3.3.8. Fastness properties measurements	58
3.3.8.1. Light fastness	58
3.3.8.2. Wash fastness	58
3.4. Designs and their draping/patterns	58
4. Results and Discussion	66
4.1. The effect of the treatment with PU and ZnO	66
on wool and silk fabrics	00

4.1.1. The effect of the treatment of wool and silk fabrics with polyurethane (PU) and zinc oxide (ZnO) on antibacterial activity and wet crease recovery angle and their durability	66
4.1.2. Effect of polyurethane (PU) concentration on antibacterial activity and wet crease recovery angle of finished wool and silk fabrics	70
4.1.3. Effect of zinc oxide (ZnO) concentration on antibacterial activity and wet crease recovery angle of finished wool and silk fabrics	71
4.1.4.Effect of curing temperature on antibacterial activity and wet crease recovery angle of finished wool and silk fabrics	73
4.1.5.Effect of curing time on antibacterial activity and wet crease recovery angle of finished wool and silk fabrics	74
4.2. Durability to laundering	76
4.3. Scanning Electron Microscope (SEM) and Electron Dispersion Emission X-ray (EDX) of finished wool and silk fabrics	79
4.3.1. SEM and EDX of finished woolen fabrics	79
4.3.2. SEM and EDX of finished silk fabrics	82
4.4. Ultraviolet Protection Factor (UPF) evaluation	85
4.4.1. Evaluation of Ultraviolet Protection Factor (UPF) of finished wool fabrics	86
4.4.2. Evaluation of Ultraviolet Protection Factor (UPF) of finished silk fabrics	87
4.5. Physico-mechanical properties	88
4.6. Effect of acid dyeing of wool and silk fabrics	91
4.7. Fastness properties of acid dyeing wool and silk fabrics	94
5. Designs and products	98

5.1. The value addition	98
5.1.1. Multifunctional finishing	98
5.1.1.1. Wrinkle free garments	98
5.1.1.2. Antibacterial protection garments	99
5.1.1.3. Ultraviolet protection garments	99
5.1.1.4. Hydrophilic garments	100
5.1.2. Tie-dyeing Techniques	100
5.1.3. Embroidery	102
5.2. The analysis of designs and products	103
6. References	129
Arabic summary	

List of Figures

Figure No.	Page
Figure (1): Photomicrographs of wool: cross sectional view (left), longitudinal view (right)	2
Figure (2): Morphological diagram of a wool fiber	3
Figure (3): Photomicrographs of silk: cross sectional view (left), longitudinal view (right)	7
Figure (4): Typical mechanism for a urethane adhesive bonding covalently to a polar surface	17
Figure (5): Two-phase morphology of polyurethane	19
Figure (6): Modes of antimicrobial action	24
Figure (7): UV radiation and textile structure	39
Figure (8): Manufacture chart of acid dyes	55
Figure (9): SEM of wool fabrics surface morphology (a) untreated fabric; (b) PU binder coated fabric; (c) ZnO treated fabric; (d) PU with ZnO mixture coated fabric.	81
Figure (10): EDX micrographs of wool fabrics(a) ZnO treated fabric, (b) PU with ZnO mixture coated fabric	82
Figure (11): SEM of the silk fabrics surface morphology (a) untreated fabric; (b) PU binder coated fabric; (c) ZnO treated fabric; (d) PU with ZnO mixture coated fabric	84

Figure (12): EDX micrographs of silk fabrics (a)	85
ZnO treated fabric; (b) PU with ZnO mixture	
coated fabric	
Figure (13): Small circles tie and dye	101
Figure (14): Stripes tie and dye	101
Figure (15): Random tie and dye	102
Figure (16): Running stitch	103
Figure (17): Herringbone stitch	103

List of Tables

Table No.	Page
Table (1): Characteristics of the various types of acid dyes	13
Table (2): Description of UV radiation categories	39
Table (3): Test methods for UV protective fabrics	44
Table (4): Six proposed classes for functional clothing	47
Table (5): Classifications and grades of UPF	56
Table (6): The effect of treatments and the washing cycle's replica on the wool fabric	68
Table (7) The effect of treatments and the washing cycle's replica on the silk fabric	69
Table (8): Effect of polyurethane concentration on antibacterial activity and wet crease recovery angle of finished wool fabric	71
Table (9): Effect of polyurethane concentration on antibacterial activity and wet crease recovery angle of finished silk fabric	71
Table (10): Effect of zinc oxide concentration on antibacterial activity and wet crease recovery angle of finished wool fabric	72
Table (11): Effect of zinc oxide concentration on antibacterial activity and wet crease recovery angle of finished silk fabric	73

Table (12) Effect of curing temperature on antibacterial activity and wet crease recovery angle of finished wool fabric	74
Table (13) Effect of curing temperature on antibacterial activity and wet crease recovery angle of finished silk fabric	74
Table (14) Effect of curing time on antibacterial activity and wet crease recovery angle of finished wool fabric	75
Table (15) Effect of curing time on_antibacterial activity and wet crease recovery angle of finished silk fabric	76
Table (16): Effect of (PU/ZnO) mixture on antibacterial activity and wet crease recovery angle of finished wool fabric after laundering	77
Table (17): Effect of (PU/ZnO) mixture on antibacterial activity and wet crease recovery angle of finished silk fabric after laundering	78
Table (18): Ultraviolet protection factor (UPF) of the blank and the PU/ZnO finished wool fabrics	87
Table (19): Ultraviolet protection factor (UPF) of the blank and the PU/ZnO finished silk fabrics	88
Table (20): Physico-mechanical properties of blank wool fabric compared with finished wool fabric	89
Table (21): Physico-mechanical properties of blank silk fabric compared with finished silk fabric	90

Table (22): Effect of acid dyeing on color strength (K/S) values, antibacterial and wet crease recovery	93
angle of wool fabric Table (23): Effect of acid dyeing on color strength (K/S) values, antibacterial and wet crease recovery angle of silk fabric	94
Table (24): Fastness properties of untreated and treated wool fabrics dyed with acid dye	96
Table (25): Fastness properties of untreated and treated silk fabrics dyed with acid dye	97