

ALZHEIMER DETECTION USING GAUSSIAN MAP DESCRIPTORS

By

Shereen Ekhlas Mohammed Ibrahim

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in Biomedical Engineering and Systems

ALZHEIMER DETECTION USING GAUSSIAN MAP DESCRIPTORS

By

Shereen Ekhlas Mohammed Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Biomedical Engineering and Systems

Under the Supervision of

Prof.Dr. Ayman Mohammed Eldeib Assoc. Prof. Dr. Inas Ahmed Yassine

Professor of Biomedical Engineering Biomedical Engineering and systems Faculty of Engineering, Cairo University Associate Professor Biomedical Engineering and Systems Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

ALZHEIMER DETECTION USING GAUSSIAN MAP DESCRIPTORS

By

Shereen Ekhlas Mohammed Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Biomedical Engineering and systems Department

Approved by the Examining Committee

Prof. Dr. Ayman Mohammed Eldeib

(Thesis Main Advisor)

Professor, Biomedical Engineering and Systems, Cairo University

Assoc.Prof. Dr. Inas Ahmed Yassine

(Advisor)

Associate Professor, Biomedical Engineering and Systems, Cairo University

Prof. Dr. Ahmed Mohammed El-Bialy

(Internal Examiner)

Professor, Biomedical Engineering and Systems, Cairo University

Prof. Dr. Samia Abd Alraziq Mashaly

(External Examiner)

Professor in electronic research institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Shereen Ekhlas Mohammed

Date of Birth: 21/5 /1989 **Nationality:** Egyptian

E.mail: sheryekhlas89@gmail.com

Phone: 01223323122

Address: 6 Sharf Aldin St., Mitghamer, Dakahlia

Registration Date: 1./10/2012 **Awarding Date:**/2018 **Degree:** Master of Science

Department: Biomedical Engineering and systems

Supervisors:

Prof. Dr. Ayman Moahmmed Eldeib Assoc. Dr. Inas Ahmed Yassine

Examiners:

Prof. Dr. Samia Abd Alraziq Mashaly (External examiner)

-Professor in electronic research institute

Prof. Dr. Ahmed Mohammed El-Bialy (Internal examiner) Porf. Dr. Ayman Mohammed Eldeib (Thesis main advisor)

Assoc. Prof. Dr. Inas Ahmed Yassine (Advisor)

Title of Thesis:

Alzheimer detection using Gaussian map descriptors

Key Words:

Alzheimer's disease; MRI; Gaussian Map Descriptor; SVM

Summary:

Alzheimer's disease (AD) is a considered one of the common elderly disease that causes changes in behavioral and memory loss because of the death of brain cells. There are three stages for Alzheimer disease named: Alzheimer's Disease patient (AD), Mild cognitive impairment (MCI) and Early stage. In this work, we purpose the use of the Gaussian map descriptors to distinguish between AD, MCI and normal (N) subjects, by analyzing the hippocampus and amygdala. Based on Gaussian maps, several features were extracted such as the Gaussian curvatures, the mean curvature and Gaussian shape operator, which are then fed to the Support Vector Machine (SVM) in order to employ the classification task. The proposed workflow consists of seven main steps: Eddy current correction, Brain extraction, registration, segmentation, Gaussian map features calculations, and evaluation and validation of results. This thesis gives a detailed implementation for each mentioned steps.

Acknowledgments

First and foremost, I thank **ALLAH**, the most gracious, the ever merciful for helping me finishing this work.

I want to thank all those, who helped me by their knowledge and experience. I will always appreciate their efforts. I would like to offer my sincere thanks to my supervisors **Prof. Dr. Ayman Eldieb** and **Assoc. Prof. Dr. Inas A. Yassine.** I owe them for valuable supervision, continuous encouragement, useful suggestions, and active help during this work. My sincere appreciation and gratitude to my family for their help and patience during the preparation of this work, especially for my mother wish that you were here (Allah bless your own soul).

Table of Contents

TABLE OF CONTENTS
LIST OF TABLES IV
LIST OF FIGURES
LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATUREviii
ABSTRACT X
Chapter 1: Introduction
1.1. Brain anatomy
1.2. ALZHEIMER DISEASE
1.3. ALZHEIMER PROGRESSION
1.3.1. MILD ALZHEIMER STAGE (EARLY STAGE)
1.3.2. MODERATE ALZHEIMER DISESE
1.3.3. SEVERE ALZHEIMER DISESE
1.4. Alzheimer's disease Risk Factors
1.4.1. Unavoidable Risk Factor
1.4.2.Modifible Factors8
1.5. PROBLEM STATEMENT9
1.6.Thesis structure9
CHAPTER 2: IMAGING TECHNIQUE FOR ALZHEIMER DETECTION
2.1. Introduction
2.2. THE BASICS OF MRI11
2.2.1.IMAGE CONSTRUCTION 12
2.2.2. MRI SEQUENCE. 12
2.2.2.1. SPIN ECHO SEQUENCE
2.2.2.2. Graidiant Echo Sequence
2.2.2.3.Inversion recovery sequence
CHAPTER 3: LITERATURE REVIEW & RELATED WORK
3.1. VOXEL-BASED ANALYSIS
3.1.1. DIRECT APPROACH
3.1.2. STAND-SCORE APPROACH
3.1.3. Compare approach 17
3.1.4. ATLAS APPROACH
3.2. VERTEX-BASED ANALYSIS. 18
3.2.1. DIRECT APPRACH
3.2.1. DIRECT APPRACH

CHAPTER 4: GAUSSIAN MAP BASED CLASSIFICATION SYSTEM	23
4.1. Introduction	23
4.2. Dataset description	
4.3. OVERALL SYSTEM STEPS.	24
4.3.1. Prerocessing Operations	24
4.3.1.1. EDDY CURRENT CORRECTION	25
4.3.1.2. Brain extraction	26
4.3.1.3. VOLUME REGISTRATION	27
4.3.1.4. ROI SELECTION (SEGMENTATION)	27
4.3.2. GAUSSIAN MAP BASED ANALYSIS	28
4.3.2.1. GAUSS MAP	28
4.3.2.1.1. GAUSSIAN CURVATURE	29
4.3.2.1.2. MEAN CURVATURE	30
4.3.2.1.3. GAUSSIAN SHAPE OPRATOR	30
4.3.2.2. SURFACE PARAMETRIZATION	31
4.3.2.3FEATURE FUSION	32
4.3.3. DIMENSIONALITY REDUCTION	33
4.3.3.1.FISHER SCORE.	
4.3.4.CLASSIFICATION.	
4.3.5. Performance Evaluation.	
4.4. COMPARISON WITH SPHERICAL HARMONIC SERIES ANALYSIS	38
4.5. ROI VOLUME CALCULATION	
4.5.1 VolBrain	41
CHAPTER 5: RESULTS AND DISCUSSION	45
5.1. Introduction.	45
5.2. CLASSIFICATION PERFORMANCE OF GAUSS MAP BASED SYSTEM	
5.3. SPHARM RESULTS	53
5.2. ROI VOLUME BASED ANALYSIS CLASSIFICATION	55
CHAPTER 6: CONCLUSIONS AND FUTURE WORK	59
6.1. CONCLUSION	59
6.2. Future work	
REFERENCES	61

List of Tables

Table 2.1 TR, and TE choice for SE	13
Table 2.2 TE and flip angle choices for GR	13
Table 3.1 Evaluation of voxel, vertex and ROI approaches for AD vs. Normal	22
Table 3.2 Evaluation of voxel, vertex and ROI approaches for MCI vs. Normal	22
Table 5.1 Accuracy of classifier of Gauss Map features based on Amygdala region	45
Table 5.2 Accuracy of classifier of Gauss Map features based on Hippocampus	
region	46
Table 5.3 Accuracy of classifier of Gauss Map Features based on feature	level
fusion	47
Table 5.4 Accuracy of classifier Gauss Map Features based on Region	level
fusion	49
Table 5.5 Accuracies of classifier based on SPHARM-MAT	53
Table 5.6 Accuracies of classifier based on volumes of ROI	55

List of Figures

Figure 1.1 Brain main four lobes	2
Figure 1.2 Limbic systems	
Figure 1.3 Hippocampus shape.	4
Figure 1.4 Healthy and damaged brain cells	5
Figure 1.5 Early stage of Alzheimer	
Figure 1.6 Moderate stage of Alzheimer	6
Figure 1.7 Severe Stage of Alzheimer	
Figure 1.8 Healthy and advanced Alzheimer brain	8
Figure 2.1 Difference between Brain shape at stage of Normal, MCI and AD M	
Structural MRI	11
Figure 2.2 particles status in (a) absence of external magnetic field (B)	11
(b) Presence of magnetic field (Bo)	
Figure 2.3 MRI Gradient coils	12
Figure 2.4 Spin Echo sequence	13
Figure 2.5 Gradient Echo sequence	
Figure 2.6 Inversion Recovery sequence	14
Figure 3.1 Histogram of probability Map of Tissue	15
Figure 3.2 Grey matter, white matter and CSF Tissue masks	
Figure 3.2 Bootstrap Method	18
Figure 3.3 Cortical Thickness Calculation.	19
Figure 3.4 Cortex gyrus	20
Figure 4.1 Flowchart of overall proposed algorithm	24
Figure 4.2 Preprocessing operations	
Figure 4.3 (a) Eddy current, (b) is noisy MRI image due to eddy current, (c)	after
applying Eddy current correction	
Figure 4.4 (a) Brain MRI before removing skull	27
(b) Brain MRI after removing skull	27
Figure 4.5 Hippocampus and Amygdala position	28
Figure 4.6 Gauss Map representation of a line to the contour of a circle and a plane t	to the
surface of the sphere	29
Figure 4.7 Principle curvatures at a point on a surface	29
Figure 4.8 the effect of the sign of Gaussian curvature. Surface of negative Gau	ssian
curvature is hyperboloid, a surface of zero Gaussian curvature (cylinder), and a su	ırface
of positive Gaussian curvature is sphere	30
Figure 4.9 Second fundamental form definition	31
Figure 4.10 Parameterization output	32
Figure 4.11 Feature fusion	32
Figure 4.12 Support vectors	
Figure 4.13 Kernel trick for non-linear Classification	36
Figure 4.14. Nested loop	36
Figure 4.15 Confusion matrix	37
Figure 4.16 ROC Curve example	38
Figure 4.17 Spherical Harmonic decomposition	39
Figure 4.18 SPHARM GUI	
Figure 4.19 Flow chart of volume estimation in Volbrain	42

Figure 4.20 VolBrain steps4	13
Figure 4.21 Algorithm of Volume	
Figure 5.1 ROC curve of (a) Gaussian curvature of Hippocampus region (b) Gaussia	an
shape operator of Hippocampus region for Normal vs. Abnormal	
Figure 5.2 ROC curve of (a) Gaussian curvature of Hippocampus region (b) Gaussia	
shape operator for hippocampus region for AD vs. MCI	17
Figure 5.3 ROC curve of (a) Gaussian curvature based on feature fusion for (b) Gaussian	an
shape operator based on feature fusion for Normal vs. Abnormal	
Figure 5.4 ROC curve of (a) Gaussian curvature based on Feature level fusion (b)	b)
Gaussian shape operator based on feature fusion for AD vs. MCI	1 8
Figure 5.5 ROC curve of (a) Gaussian Curvature of Region level fusion (b) mea	an
curvature for region fusion (c) Gaussian shape operator for region fusion for Normal v	'S.
Abnormal5	50
Figure 5.6 ROC curve of (a) Gaussian Curvature of Region level fusion (b) mea	an
curvature of region fusion (c) Gaussian shape operator of region fusion for AD v	'S.
MCI5	
Figure 5.7 Hippocampus change during Alzheimer	
Figure 5.8 ROC curve of SPHARM features for Amygdala region for (a)Normal v	
Abnormal, (b) AD vs. MCI	
Figure 5.9 ROC curve of SPHARM for Hippocampus region for (a) Normal v	'S.
	54
Figure 5.10 ROC curve of SPHARM for feature level fusion for (a) Normal vs. Abnorm	
and (b) AD vs. MCI.	
Figure 5.11 ROC curve of SPHARM for region level fusion for: (a) Normal v	'S.
	55
Figure 5.12 ROC curve of Volume of Amygdala region for (a) Normal vs. Abnormal, (l	
AD vs. MCI5	
Figure 5.13 ROC curve volume of Hippocampus region for (a) Normal vs. Abnorma	al.
(-)	56
Figure 5.14 ROC curve volume of feature level fusion for (a) Normal vs. Abnormal, (b)	b)
120 (0.1.1.0.1	57
Figure 5.15 ROC curve of volume of region level fusion (a) Normal vs. Abnormal, (b)	
AD vs. MCI	
Figure 5.16 VolBrain subcortical structure From Up to down AD, MCI and Normal5	58

List of Symbols, abbreviations, and Nomenclature

AAL Automated Anatomical Labeling

AD Alzheimer's disease

ADNI Alzheimer's disease Neuroimaging Initiative

ANN Artificial Neural Network classifier

AUC Area Under Curve
BOVW Bag-of-Visual-Words
CT Computed Tomography
CSF Cerebrospinal Fluid

DTI Diffusion Tensor Imaging
EM Expectations and Maximization
FDA Food and Drug Administration

FMRI Functional MRI

FSL FMRIB Software Library
IR Inversion Recovery sequence
GR Gradient Echo sequence
K-NN K-nearest neighbor classifier

Libsym Library of Support Vector Machine

MCI Mild cognitive impairment
MLE Maximum likelihood estimate
MRI Magnetic Resonance Imaging
NIA National Institute on Aging

NIBIB National Institute of Biomedical Imaging and Bioengineering

NMR
 NUClear Magnetic Resonance
 NTI
 Normalized Thickness Index
 PCA
 Principle component analysis
 PCC
 Posterior cingulate cortex

PD Proton Density

PET Positron emission tomography

RBF Radial Basis Function RF Radio frequency

ROC Receiver Operating Curve ROI Region of interest (ROI)

TE Echo Time
TI Inversion Time

TIV Total Intracranial Volume

TR Repetition Time
SE Spin Echo sequence
SPHARM Spherical harmonics

SPHARM-PDM Spherical Harmonics-Point Distribution Model

 $\begin{array}{ccc} SPM & Statistical \ Parametric \ Mapping \\ S_p & Gaussian \ shape \ operator \\ SVM & Support \ vector \ machine \end{array}$

SVM-RFE SVM Recursive Feature Elimination

VBM Voxel-based Morphometric VolBrain Volume of Brain

Abstract

Alzheimer's disease (AD) is a considered one of the common elderly diseases. It is a type of dementia that causes changes in behavior in addition to memory loss because of the death of brain cells. It is considered a chronic neurodegenerative disease which gets worse over time. Its symptoms are progressive as it starts with forgetting some common words or places, developing over time to forgetting the patient's own identity. Early stage in which people may perform their usual activities as they still drive, work and deal with other people but with less efficiency. There are two stages for AD, named: Mild cognitive impairment (MCI) which is also known as moderate Alzheimer's disease and considered the longest stage and may last for many years. AD, which is severe stage or late stage, which ends with the patient death.

The Hippocampus and Amygdala regions, sub-regions of the limbic system, are responsible of the memory storage. These two regions are very good indicators for the presence of AD and considered as the most affected part in terms of shape by the Alzheimer deterioration.

In this work, we purpose the use of the Gaussian map descriptors to distinguish between AD, MCI and normal (N) subjects, by analyzing the Hippocampus and Amygdala. Based on Gaussian maps, several features were extracted such as the Gaussian curvatures, the mean curvature and the Gaussian shape operator, which are then fed to the Support Vector Machine (SVM) in order to employ the classification task. Gaussian map features are computed for Hippocampus region, Amygdala region, doing feature level fusion which means merging between hippocampus region features and Amygdala region features and finally doing region level fusion which means adding Hippocampus region to Amygdala region.

Alzheimer's Disease Neuroimaging Initiative (ADNI) Dataset formed of forty five, fifty five and sixty five T₁ weighted MRI volumes for AD, MCI and normal subjects respectively. ADNI dataset is a global research effort that actively supports the investigation and development of treatments that slow or stop the progression of AD. ADNI is publically available dataset for free to authorized investigators through the Image Data Archive (IDA).

Different Preprocessing steps should be performed in order to prepare the data for analytics. FSL software was used to carry out the preprocessing operations such as the eddy current correction, brain extraction, registration and segmentation of hippocampus and amygdala regions.

Gaussian map features which are Gaussian curvature, mean curvature and Gaussian shape operator are calculated for the segmented ROI. Fisher score was used for dimensionality reduction purposes in order to overcome the overfitting problem followed by SVM classifier for the classification between Normal and Abnormal subjects and between AD and MCI subjects. 10 folds cross validation was used in the whole study to study the system robustness based on the accuracy as well as the area under the curve for the ROC curve.

The results of the system shows that Gaussian curvature feature is competitive to classify between Normal people and abnormal as well as the AD and MCI for all regions. For Hippocampus region accuracies of the system based on Gaussian curvature for normal and abnormal classification and for AD and MCI classification are 69.5%, 98.3% respectively. Doing feature level merging improve accuracy of the system slightly as accuracies reaches 70.4% for normal and abnormal classification and 96.2% for AD and MCI classification. Region level fusion boosted the performance of the classifier especially in AD and MCI classification to reach 100% accuracy and reaches 72.2% for normal and abnormal classification.

Chapter 1: Introduction

Alzheimer's disease (AD) is a neurological disorder in which the death of brain cells causes problems with memory, thinking and behavior. It is a general term for memory loss and other intellectual abilities serious enough to interfere with daily life. Alzheimer's disease accounts for 60 to 80 percent of dementia cases.

AD is not considered a normal deterioration of the health with aging, although it is considered as the most known risk factor increasing with aging. Moreover, the majority of patients suffering from AD are of 65 years and older. Nevertheless, Up to 5 percent of the patients have an early onset AD (also known as younger onset), which often appears their 40s or 50s years old. In early stages of AD, the memory loss is mild, whereas, in late stage of AD, individuals lose the ability to carry out a conversation and respond to their environment [1].

AD is a type of dementia that involves the death of the brain cells and though causing behavioral changes, unstable thinking and memory loss. Its symptoms are slowly developed with the progression of the disease. There are different factors that effect on the progression of AD such as age, family history, and the education level. It is considered as one of the common elderly disease that occurs at the age 60 and older. Nevertheless, Up to 5 % of the patients suffering from AD are of 40 to 50 years old which is mostly considered due to some family history [1].

On Anatomical basis, AD, caused by brain cell death, is considered as a neurodegenerative disease, which means there is progressive brain cell death that is increasing with time. Though, the total brain size shrinks with AD. At the late stages, the brain tissue has progressively fewer nerve cells and connections [1].

AD worsen over time, although the rate at which the disease progresses varies. On average, a person with AD lives ranges from four to eight years after diagnosis, nevertheless, in some cases, they can reaches 20 years after diagnosis. This period variation is mainly based on several factors such as the early diagnosis and treatment, high level of education, the family history as well as multiple genetic and environmental factors [2].

In this study, we employ new shape based features to distinguish between AD, MCI and normal subjects based on T₁-weighted MRI dataset. The proposed features are based on Gaussian map descriptors, which are distinguishing the change in shape of the regions affected during Alzheimer for the different categories. Several modules have been used for the data preparation, analysis and performance evaluation, which will be explained in details later within the thesis.