

PARAMETRIC STUDY OF DOUBLE PIPE HEAT EXCHANGERS WITH INTERNAL WAVY TAPE INSERTS

 $\mathbf{B}\mathbf{y}$

Mohamed Alaa Abdel Fatah Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the Requirements for the Degree of
MASTER OF SCIENCE
In
MECHANICAL POWER ENGINEERING

PARAMETRIC STUDY OF DOUBLE PIPE HEAT **EXCHANGERS WITH INTERNAL WAVY TAPE INSERTS**

By

Mohamed Alaa Abdel Fatah Hassan

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE In MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil

Professor, Mechanical Power Engineering Department Faculty of Engineering, Cairo University

Dr. Gamal Abd El Moniem El Hariry

Dr. Taher Mohamed Abou Deif

Faculty of Engineering, Cairo University

Lecturer, Mechanical Power Engineering Department Lecturer, Mechanical Power Engineering Department Faculty of Engineering, Cairo University

PARAMETRIC STUDY OF DOUBLE PIPE HEAT EXCHANGERS WITH INTERNAL WAVY TAPE INSERTS

By

Mohamed Alaa Abdel Fatah Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the Requirements for the Degree of
MASTER OF SCIENCE
In
MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil

Thesis Main Advisor

Professor, Mechanical Power Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Abdel- Wahed Fouad El-Dib

Internal Examiner

Professor, Mechanical Power Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Faieq Abd Rabbo

External Examiner

Professor, Mechanical Power Engineering Department Faculty of Engineering, Banha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

Engineer: Mohamed Alaa Abdel Fatah Hassan

Date of Birth: 24/10/ 1990 **Nationality:** Egyptian

E-mail: eng.moh.alaa@hotmail.com

Phone: +20 (111) 861-6150

Address: 8th Petrol Buildings, Abdel Moniem Sanad St.,

Agouza-Giza

Registration Date: 1/10/2012 **Awarding Date:** //2017

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Gamal Abd El Moniem El Hariry

Dr. Taher Mohamed Abou Deif

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil Thesis Main Advisor

Prof. Dr. Abdel- Wahed Fouad El-Dib Prof. Dr. Mohamed Faieq Abd RabboExternal Examiner

Professor, Mechanical Power Engineering Department

Faculty of Engineering, Banha University

Title of Thesis: Parametric Study of Double Pipe Heat Exchangers with Internal

Wavy Tape Inserts

Key Words: CFD; Heat Transfer; Thermal performance; Wavy tape; Double Pipe

Heat Exchanger

Summary:

In the present study, Double pipe heat exchanger inserted with wavy tape turbulator is analysed numerically by solving the governing equations using ANSYS FLUENT 15.0 software. The thermal performance of the unit in the turbulent flow regime for Reynolds number range of 5000 - 25,000 is studied for different wavy tape geometries. Firstly, five different wavy tape angles of 45° , 60° , 90° , 120° and 150° are considered.

Results showed that adding wavy tape increases the heat transfer rate up to 193% compared to plain tube coupled with a large value of the friction factor. It is seen that small wavy tape angles produce higher heat transfer enhancement and pressure drop.

Also, wavy tape amplitude is investigated and the results showed that increasing wavy tape amplitude increases the heat transfer rate and also the pressure drop. Eventually, it is concluded that the ideal tape amplitude is about 54% of the pipe inner diameter.

Finally, parametric model is developed in order to investigate the effect of the variation of different parameters on the performance of heat exchanging unit. Variations of inlet flow velocity of hot and cold streams are employed monitoring other performance parameters response. Results showed that variation of inlet velocity affects heat transfer rate and outlet temperatures of both streams. Also, effectiveness of heat exchanger is affected. Moreover, fouling of heat transfer surface is taken into consideration showing that fouling layer affects the response of performance parameters to velocity variations.

ACKNOWLEDGMENT

Firstly, I am grateful to God for the good health and well-being that are necessary to complete this thesis. I am also using this opportunity to express my gratitude to everyone who supported me throughout the study. I am thankful for their aspiring guidance, invaluably constructive criticism and friendly advice during the work. I am sincerely grateful to them for sharing their truthful and illuminating views on a number of issues related to the thesis.

I express my warm thanks to Prof. Dr. Essam E.Khalil, Dr. Gamal Abd El-Moniem El-Hariry and Dr. Taher Mohamed for their support, guidance and encouragement.

I would also like to thank all my professors for their help throughout my study. I extend my gratitude to my dear colleague and friend Mohamed Emara for his valuable suggestions and noteworthy discussions.

Finally, My parents, my wife and son: you have always been there for me and have encouraged me to follow my dreams. I owe a lifelong debt for your patience and care and for maintaining a perfect environment for study and research.

TABLE OF CONTENTS	PAGE
ACKNOWLEDGMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
NOMENCLATURE	viii
ABSTRACT	x
CHAPTER 1 : INTRODUCTION	1
1.1 Energy problem in the world	1
1.2 Energy problem in Egypt	1
1.3 Impact of heat exchangers on energy consumption	3
1.4 Heat exchanger classifications	3
1.5 Heat exchanger analysis	4
1.5.1 Overall heat transfer coefficient	5
1.6 Heat transfer enhancement	6
1.6.1 Overall enhancement ratio	9
1.6.2 Thermo-hydraulic behavior	9
CHAPTER 2 : LITERATURE REVIEW	10
2.1 Introduction	10
2.2 Heat transfer enhancement (Passive method)	10
2.2.1 Experimental Approach	10
2.2.2 Numerical Approach	19
2.3 Research objectives	25
CHAPTER 3 : GOVERNING EQUATIONS	26
3.1 Computational fluid dynamics (CFD)	26
3.2 Parametric study	27
CHAPTER 4 : NUMERICAL PROCEDURE	30
4.1 Introduction	30
4.2 Numerical CFD model	
4.2.1 Physical models	
4.2.2 Model validation	

4.2	2.3	Mesh independence study	33
4.2	2.4	CFD model description	34
4.2	2.5	Boundary conditions	36
4.2	2.6	Data reduction	36
CHAPT	ΓER 5	RESULTS AND DISCUSSION	38
5.1	Effe	ect of wavy tape angle	38
5.1	.1	Heat transfer performance.	38
5.1	.2	Friction factor	43
5.1	.3	Thermal performance enhancement factor	44
5.1	.4	Developed correlations	45
5.2	Effe	ect of wavy tape amplitude	47
5.3	Hea	t exchanger performance	51
5.3	3.1	Parametric model validation	51
5.3	3.2	Model description	53
5.3	3.3	Parametric method	54
5.3	3.4	Effect of velocity variation of hot stream	55
5.3	3.5	Effect of velocity variation of cold stream	57
CHAPT	ΓER 6	S : SUMMARY AND CONCLUSIONS	61
6.1	Sun	nmary	61
6.2	Cor	nclusions	61
6.3	Rec	commendations for future work	62
Referen	ices		64
Append	lix		67
A.1	Pytl	non code	67
A .2	1.1	Variation of velocity of hot stream	67
A .2	1.2	Variation of velocity of cold stream	70
A.2	Out	put results for hot stream velocity variation case	74
Δ3	Out	nut results for cold stream velocity variation case	75

LIST OF TABLES

	PAGE
Table 4-1-Mesh independence study outputs	33
Table 4-2-Geometry characteristics of present study CFD model	35
Table 4-3-boundary conditions of CFD model	36
Table 5-1-Correlations for Nusselt number	46
Table 5-2-Correlations of friction factor	46
Table 5-3-Geometrical data of double pipe heat exchanger used in the experiment	51
Table 5-4-Temperature and flow rate measurements	51
Table 5-5-Comparison between experimental measurements and model data	52
Table 5-6-Statistical parameters of the model	53
Table 5-7-properties and inlet conditions of double pipe heat exchanger	54

LIST OF FIGURES

		Page
Figure 1-1	World energy demand for the past decades	1
Figure 1-2	Egypt natural gas production rates for the past years	2
Figure 1-3	Plate heat exchanger	4
Figure 1-4	Printed circuit heat exchanger	4
Figure 1-5	Thermal resistance network associated with heat transfer in a double pipe heat exchanger	5
Figure 1-6	Heat transfer enhancement using ultrasonic scale preventer USP	7
Figure 1-7	Porous media used for heat transfer enhancement	7
Figure 1-8	Conical strip insert used as active method technique	8
Figure 1-9	Different types of turbulators a) ball turbulator b) spring wire turbulator c) twisted tape turbulator	8
Figure 2-1	Schematic diagram of wavy tape strips, where θ is wavy tape angle, L is face length	11
Figure 2-2	Variation of NTU with Reynolds number for heat exchanger containing wavy	11
Figure 2-3	Heat exchanger effectiveness versus hot water Reynolds number for different wavy strip angles	12
Figure 2-4	variation of friction factor with Reynolds number of hot water for different wavy strip angles	12
Figure 2-5	variation of the effectiveness with hot water Reynolds numbers for different cold water flow rate applying different angles, (a) $\theta = 150^{\circ}$, (b) $\theta = 120^{\circ}$, (c) $\theta = 90^{\circ}$, (d) $\theta = 60^{\circ}$	13
Figure 2-6	The inner tube fitted with twisted tapes, (a) the typical twisted tape and (b) the twisted tape with different free space ratios, where l is pitch length (m), L is tube length (m) and s is space length (m)	14
Figure 2-7	Variation of Nusselt number (Nu) with Reynolds number (Re) for the twisted tapes at different twist ratios 6.0 and 8.0	14
Figure 2-8	Variation of Nusselt number (Nu) with Reynolds number (Re) for the regularly spaced twisted tapes at various space ratios S=0.0, 1.0, 2.0 & 3.0	15
Figure 2-9	Copper tubes with different helical rib depth	15
Figure 2-10	Friction factor augmentation increases with Reynolds number for different wire coil geometries	16
Figure 2-11	Helical wire coil inserted inside a tube	17
Figure 2-12	The twisted tape with circular holes with different twist ratio used in the experiment	17
Figure 2-13	(a) Schematic of conical strip (b) Geometry of the conical strip insert (c) schematic of the circular tube with the conical-strip insert, and (d) picture of the conical strip insert.	18

		Page
Figure 2-14	Nusselt number ratio (Nu/Nu0), friction factor ratio (f/f0) and the thermal performance factor for the conical-strip and conical-ring inserts	19
Figure 2-15	Configuration of the wavy tape insert used in the study	20
Figure 2-16	The effect of wavy tape amplitude on thermal, hydraulic and overall performances	20
Figure 2-17	The effect of wavy tape width on thermal, hydraulic and overall performances	20
Figure 2-18	Inner pipe (a) Semi-circular baffles (b) Quarter-circular baffles	21
Figure 2-19	comparison of pressure drop generated from different baffle geometry	22
Figure 2-20	Conventional, short-width and center-cleared twisted tapes	22
Figure 2-21	Variation of the Nusselt number with tape width ratio (w) for short width twisted tape	23
Figure 2-22	Variation of the friction factor with tape width ratio (w) for short width twisted tape	23
Figure 2-23	Variation of the Nusselt number with central clearance ratio (c) for centered cleared twist tape	24
Figure 2-24	Variation of the friction factor with the central clearance ratio (c) for center cleared twisted tape	24
Figure 4-1	Validation mesh	31
Figure 4-2	Plain tube Nusselt number versus Reynolds number validation	32
Figure 4-3	Plain tube friction factor versus Reynolds number validation	32
Figure 4-4	Mesh chosen for independence test	33
Figure 4-5	Wavy tape insert of 90 deg. angle and 1 mm thickness	34
Figure 4-6	Inner pipe fitted with wavy tape of different angles	35
Figure 4-7	Inner pipe fitted with wavy tape with different amplitudes (150 deg. angle)	35
Figure 5-1	Variation of Nusselt number with Reynolds number for different wavy tape angle	38
Figure 5-2	Nusselt number increase percentage compared to plain tube for different wavy tape angles	39
Figure 5-3	Pipe velocity vectors for different wavy tape angles at Re = 5000	40
Figure 5-4	Velocity contours at Re=5000 for (a) 45° wavy tape (b) 60° wavy tape	41
Figure 5-5	Pipe velocity vectors for different wavy tape angles at Re = 5000	42
Figure 5-6	Effectiveness variation with Reynolds number for different wavy tapes angles	43
Figure 5-7	Variation of friction factor with stream Reynolds number for different wavy tapes angles	44
Figure 5-8	Thermal performance enhancement factor of different wavy tape versus Reynolds number of hot stream	45
Figure 5-9	Inner pipe fitted with wavy tape with different amplitudes (150 deg. angle)	47

		Page
Figure 5-10	Inner pipe fitted with wavy tape with different amplitudes (90 deg. angle)	47
Figure 5-11	Nusselt number for different amplitudes of wavy tape at Re=5000 for 90 deg. wavy tape	48
Figure 5-12	Nusselt number for different amplitudes of wavy tape at Re=5000 for 150 deg. wavy tape	48
Figure 5-13	TEF for 90 deg. wavy tape at Re=5000 for different wavy tape amplitudes	49
Figure 5-14	TEF for 150 deg. wavy tape at Re=5000 for different wavy tape amplitudes	49
Figure 5-15	Counter flow DPHE geometry used for validation check	52
Figure 5-16	Heat exchanger performance under hot stream velocity variation	55
Figure 5-17	Outlet temperature variations under hot stream velocity variation	56
Figure 5-18	Velocity variation effect on Effectiveness with and without fouling	57
Figure 5-19	Heat exchanger performance under cold stream velocity variation	58
Figure 5-20	Outlet temperature variations under cold stream velocity variation	59
Figure 5-21	Velocity variation effect on Effectiveness with and without fouling	59
Figure 6-1	Proposed wavy tape geometry with integrated circular holes	62
Figure 6-2	Proposed center-cleared wavy tape geometry	63

NOMENCLATURE

Variables

Symbol	Quantity
k	Thermal conductivity, W/m.k
L	Length, m
Nu	Nusselt number
$Nu_{\rm o}$	Nusselt number for plain tube
h	Heat transfer coefficient, W/m ² .k
Cp	Specific heat of fluid, J/kg.k
K	Kinetic energy of turbulence, m ² /s ²
U	Overall heat transfer coefficient W/m ² .k
A_s	Surface area of the pipe, m ²
Pr	Molecular Prandtl number, $Pr = Cp \mu / k$
\dot{q}	Wall heat flux, W/m ²
T_{i}	Inlet temperature, °C
$T_{\rm w}$	Temperature at the wall, °C
$\eta_{\rm f}$	Fin efficiency
R_{f}	Fouling factor, m ² k/W
D	Pipe diameter, m
R	Total thermal resistance, m ² k/W
f	Friction factor for pipe with wavy tape
f_o	Friction factor of plain tube
Re	Reynolds number

Greek Letters

ρ	Density of the fluid, kg/m ³
, μ	Fluid viscosity, kg/s.m
μ_{t}	Turbulent viscosity, kg.m/s
ϵ	Turbulence dissipation rate, m ² /s ³
θ	Wavy tape angle, degrees
$\theta_{ m o}$	Dimensionless wavy tape angle
3	Effectiveness of heat exchanger

Subscripts

- i Inner side
- o Outer side
- 0 plain tube
- in Inlet of the tube
- Out Outlet of the tube
- W Tube wall

Abbreviations

BEV Breakthrough energy venture

GDP Gross domestic product

LMTD Logarithmic mean temperature difference

CFD Computational Fluid Dynamics

NTU Number of transfer units

USP Ultrasonic scale preventer

TEF Thermal performance enhancement factor

PEC Performance enhancement coefficient

DPHE Double pipe heat exchanger

ABSTRACT

Heat transfer enhancement is one of the most interesting topics for researchers because of the energy problem worldwide and the need for optimizing energy processing equipment. Many researches have been performed on heat transfer augmentation for fluid flowing in pipes. Active, passive and compound methods are investigated resulting in number of recommendations and various types of techniques used for boosting heat transfer rate while keeping pressure drop as low as possible.

In the present study, Double pipe heat exchanger inserted with wavy tape turbulator is analyzed numerically by solving the governing equations using ANSYS FLUENT 15.0 software. The thermal performance of the unit in the turbulent flow regime for Reynolds number range of 5000 -25,000 is studied for different wavy tape geometries. Firstly, five different wavy tape angles of 45° , 60° , 90° , 120° and 150° are considered. Subsequently, effect of wavy tape amplitude on thermal behavior of the unit is also investigated.

Results showed that adding wavy tape increases the heat transfer rate up to 193% compared to plain tube coupled with a large value of the friction factor. It is seen that small wavy tape angles produce higher heat transfer enhancement and pressure drop.

Also, wavy tape amplitude is investigated and the results showed that increasing wavy tape amplitude increases the heat transfer rate and also the pressure drop. Eventually, it is concluded that the ideal tape amplitude is about 54% of the pipe inner diameter.

Finally, parametric model is developed in order to investigate the effect of the variation of different parameters on the performance of heat exchanging unit. Variations of inlet flow velocity of hot and cold streams are employed monitoring other performance parameters response. Results showed that variation of inlet velocity affects heat transfer rate and outlet temperatures of both streams. Also, effectiveness of heat exchanger is affected. Moreover, fouling of heat transfer surface is taken into consideration showing that fouling layer affects the response of performance parameters to velocity variations.

CHAPTER 1: INTRODUCTION

1.1 Energy problem in the world

The world now, particularly developing countries, faces an increase in energy demand, as illustrated in Fig 1-1, due to modern technologies, enhanced living standards and population growth. This leads to more fossil fuel consumption as it is the most used energy source. However, fossil fuel is in decline production rate because it has been forming millions of years ago and since the past two hundred years massive amount of it are used. As a result, prices of non-renewable energy sources are increasing incredibly and supply shortage is now seen in many countries around the world. Furthermore, fossil fuel consumption results in the well-known global warming problem and many other problems (such as acid rains and climatic change) that demands immediate remedial actions.

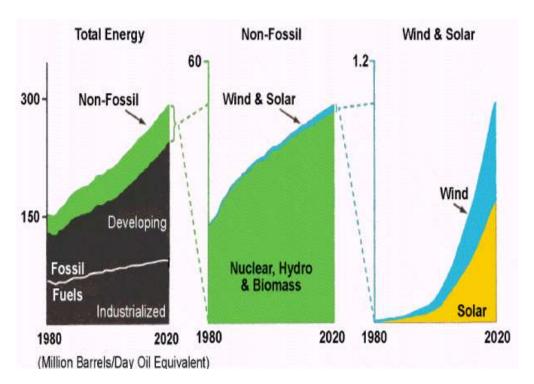


Figure 1-1-World energy demand for the past decades [1]

Thus, world now is concerned about utilizing non-fossil fuels with the maximum achievable efficiency and this would require so much effort to be exerted in the field of energy saving and heat transfer enhancement with regard to the challenging environmental considerations.

1.2 Energy problem in Egypt

Egypt is on the verge of an energy disaster. The rising demand together with reduced oil and gas productions (Refer to Fig 1-2) have recently transformed the country from exporter to importer of both, that in turn put a huge threat to its economy.