# PERFORMACE EVALUATION OF SOLAR PHOTOVOLTAIC PUMP OPERATING LANDSCAPE SYSTEM

By

## **BELAL MOHAMED SWIDAN**

B.Sc. Agric. Sc. (Agric. Engineering), Ain Shams Univ. (2008)

A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(Farm Machinery and Power Engineering)

Department of Agriculture Engineering Faculty of Agriculture Ain Shams University

2017

## **Approval Sheet**

# PERFORMACE EVALUATION OF SOLAR PHOTOVOLTAIC PUMP OPERATING LANDSCAPE SYSTEM

By

### BELAL MOHAMED SWIDAN

B.Sc. Agric. Sc. (Agric. Engineering), Ain Shams Univ. (2008)

### This thesis for M.Sc. degree has been approved by:

#### Dr. El Said Mohamed Khalifa

Prof. of Agricultural Engineering, Faculty of Agriculture, Kafrelsheikh University.

#### Dr. Mosutafa Faheem Mohammed Abdel-Salam

Associate Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

#### Dr. Mubarak Mohammed Mostafa

Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

**Date of Examination:** 9/10/2017

# PERFORMACE EVALUATION OF SOLAR PHOTOVOLTAIC PUMP OPERATING LANDSCAPE SYSTEM

By

## **BELAL MOHAMED SWIDAN**

B.Sc. Agric. Sc. (Agric. Engineering), Ain Shams Univ. (2008)

## **Under the supervision of:**

#### Dr. Mubarak Mohammed Mostafa

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal supervisor)

## Dr. Mahmoud Ahmed El-Nono (Late)

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

#### **ABSTRACT**

Belal Mohamed Swidan: Performance evaluation of solar photovoltaic pump operating landscape system. Unpublished M.Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2017.

Field test had been carried out in 2016 – 2017 (August – February) at Menofia governorate, Egypt. The study carried out to evaluate the performance of a solar water pumping system for the purpose of operating landscape system. The system consists of a centrifugal water pump connected directly to DC electric motor that which connected directly to a solar photovoltaic generator. Measurements were taken every hour starting from 8:00 a.m. to 4:00 p.m. through randomly selected days during the period between August and February. Results show relation between the solar radiation and the output electrical power, hydraulic power, pumping rates and the efficiency of the system.

System evaluation was made by estimating the intensity of solar radiation, Photovoltaic output power and the hydraulic power generated. The results show that the maximum hydraulic output power was 14 W where the electrical power consumption was 140 W and the PV output power was 712 W at solar radiation intensity of 841 W/m². The maximum efficiency recorded for the overall system was 0.41% where the photovoltaic generator and pumping system efficiencies found to be 14.98% and 14.21% respectively.

**Keywords:** Solar water pumping; Pumping system; Photovoltaic water pumping; landscape; Performance evaluation.

#### **ACKNOWLEDGEMENT**

First of all, Praise be to Allah for His choicest blessings, mercy, strength that made it possible for me to complete my studies and enabling me to accomplish this great task of thesis work.

I would like to thank all the people who contributed in some way to the work described in this thesis. First and foremost, I thank my Godfather **Prof. Dr. Mubarak M. Mostafa**, you have been a tremendous mentor for me. I would like to thank him for encouraging my research and for allowing me to grow as a research scientist. He consistently allowed this paper to be my own work, but steered me in the right the direction whenever he thought I needed it. Your advice on both research as well as on my career have been invaluable.

I would like to thank my thesis advisor **Prof. Dr. Mahmoud A. El-Nono** (Late). The door to Prof. **El-Nono** office was always open whenever I ran into a trouble spot or had a question about my research or private matters. No words can describe how great he was. We will never forget you; Allah bless you sir.

Finally, I must express my very profound gratitude to my great mother and to my father (late), brothers, sister, friends and colleagues for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

I will keep on trusting You for my future. Thank you, Lord.

# **CONTENTS**

| LIST OF TABLES                                       |
|------------------------------------------------------|
| LIST OF FIGURES                                      |
| LIST OF ABBREVIATIONS                                |
| 1.INTRODUCTION                                       |
| 2. REVIEW OF LITERATURES                             |
| 2-1. General outlook on situation of energy in Egypt |
| 2-2. Scope of solar energy                           |
| 2-2-1.Solar energy facts                             |
| 2-2-2. Availability of solar energy in Egypt         |
| 2-3. Solar energy systems                            |
| 2-3-1. Non-thermal solar systems.                    |
| 2-3-2. Thermal solar systems.                        |
| 2-4. Urbanization and Energy Problems in Egypt       |
| 2-5. History of Water in Landscape                   |
| 2-6. Water Display purpose                           |
| 2-6-1. Aesthetic Factors.                            |
| 2-6-1-1.Visual                                       |
| 2-6-1-2. Psychological.                              |
| 2-6-1-3. Auditory                                    |
| 2-6-1-4. Sensory Effects.                            |
| 2-6-2. Functional Reasons.                           |
| 2-6-2-1. Recreation.                                 |
| 2-6-2-2. Circulation Control.                        |
| 2-6-3. Utilitarian.                                  |
| 2-7. Quantification.                                 |
| 2-7-1. Capacity                                      |
| 2-7-2. Flow rate                                     |
| 2-7-3. Pressure                                      |
| 2-8. Water Effects.                                  |
| 2-8-1. Still water                                   |

|                                                         | Page |
|---------------------------------------------------------|------|
| 2-8-2. Moving water                                     | 20   |
| 2-9. Operating Systems                                  | 21   |
| 2-9-1. Natural flowing streams                          | 21   |
| 2-9-2. Mechanical motors and pumps                      | 21   |
| 2-10. Water Pumping                                     | 22   |
| 2-11. Solar water pumps                                 | 22   |
| 2-12. Studies and investigations of effectiveness and   |      |
| performance parameters of site specific design of       |      |
| Solar Water Pumping systems                             | 24   |
| 3. MATERIALS AND METHODS                                | 28   |
| 3-1. Study Area                                         | 28   |
| 3-2. Meteorological data                                | 28   |
| 3-3. System description                                 | 30   |
| 3-3-1. The photovoltaic generator                       | 31   |
| 3-3-2. The DC motor                                     | 32   |
| 3-3-3. The Water Pump                                   | 33   |
| 3-3-4. The Water Tank                                   | 34   |
| 3-3-5. Measuring instruments                            | 34   |
| 3-3-5-1. The multi meter                                | 36   |
| 3-3-5-2. The flow sensor                                | 36   |
| 3-3-5-3. The pressure gauge                             | 37   |
| 3-3-5-4. The thermometer                                | 37   |
| 3-4. Methodology used in the determination of the power |      |
| and efficiency of the System                            | 38   |
| 3-4-1. The Input Power                                  | 38   |
| 3-4-2. PV Array Output                                  | 38   |
| 3-4-3. The hydraulic power output                       | 39   |
| 3-4-4. Array efficiency                                 | 39   |
| 3-4-5. Subsystem efficiency                             | 39   |
| 3-4-6. Overall efficiency                               | 39   |
| 4. RESULTS AND DISCUSSION                               | 40   |

|                                   | Page |
|-----------------------------------|------|
| 4-1. The Input Power              | 40   |
| 4-2. PV Array Output              | 41   |
| 4-2-1. Generated electric power   | 41   |
| 4-2-2. Electric power consumption | 43   |
| 4-3. The hydraulic power output   | 45   |
| 4-4. Array efficiency             | 47   |
| 4-5. Subsystem efficiency         | 48   |
| 4-6. Overall efficiency           | 49   |
| 5. SUMMARY AND CONCLUSION         | 51   |
| 6. REFERENCES                     | 53   |
| 7. ARABIC SUMMARY                 |      |

# LIST OF TABLES

| Table No. |                                            | Page |
|-----------|--------------------------------------------|------|
| 1         | Basic Photovoltaic module data             | 31   |
| 2         | Photovoltaic module electrical data (STC)  | 32   |
| 3         | Photovoltaic module electrical data (NOCT) | 32   |
| 4         | Characteristics of the water pump          | 33   |

# LIST OF FIGURES

| Fig. No. |                                                 | Page |
|----------|-------------------------------------------------|------|
| 1        | Energy sources in Egypt.                        | 4    |
| 2        | The production and consumption of oil in        |      |
|          | Egypt                                           | 5    |
| 3        | Total energy resources on the earth             | 6    |
| 4        | The potential of solar energy in Egypt          | 7    |
| 5        | Conversion the solar radiation into other forms |      |
|          | of energy.                                      | 8    |
| 6        | The working principle of the solar              |      |
|          | Photovoltaic panel.                             | 9    |
| 7        | The typical photovoltaic system.                | 10   |
| 8        | New sustainable energy investments by           |      |
|          | geography (in us\$ billions)                    | 14   |
| 9        | Clean energy global Investments trends and its  |      |
|          | depending on Oil Prices.                        | 15   |
| 10       | Still water effects.                            | 19   |
| 11       | Free falling water effects.                     | 20   |
| 12       | Flowing water effects.                          | 20   |
| 13       | Cascading water effects.                        | 21   |
| 14       | Spouting water effects.                         | 21   |
| 15       | Measured pump efficiency vs. depth for six      |      |
|          | different pumps.                                | 23   |
| 16       | Solar submersible Pump.                         | 24   |
| 17       | Solar Surface Pump.                             | 24   |
| 18       | Maximum air temperature air temperature         | 28   |
| 19       | Average of maximum relative humidity            | 29   |
| 20       | Average solar radiation.                        | 29   |
| 21       | Components of solar pumping systems and         |      |
|          | energy conversion steps.                        | 30   |
| 22       | Permanent magnet DC motor                       | 33   |
| 23       | Pump data and performance chart                 | 33   |

| Fig. No. |                                                  | Page |
|----------|--------------------------------------------------|------|
| 24       | Connection between the integrated AC motor       |      |
|          | water pump and the DC motor                      | 34   |
| 25       | System diagram.                                  | 35   |
| 26       | Measuring instruments.                           | 36   |
| 27       | The digital multi meter                          | 36   |
| 28       | The equipment intended for the measurement       |      |
|          | and monitoring of the water                      | 37   |
| 29       | The pressure gauge.                              | 37   |
| 30       | The digital thermometer.                         | 38   |
| 31       | Daily hourly average solar radiation             | 40   |
| 32       | Average input power to the system (w/day)        | 41   |
| 33       | Daily hourly average PV array output power       |      |
|          | (W)                                              | 42   |
| 34       | Daily measured output power as a function of     |      |
|          | average solar radiation intensity                | 43   |
| 35       | Hourly average electric power consumption        |      |
|          | and hourly average solar radiation levels at     |      |
|          | different day times.                             | 44   |
| 36       | Hourly average electric power consumption        |      |
|          | and hourly average output power at different     |      |
|          | day times                                        | 45   |
| 37       | Pumping rate as a function of solar radiation    | 45   |
| 38       | The variation of radiation intensity caused      |      |
|          | variation in the measured output pumping         |      |
|          | rates                                            | 46   |
| 39       | The variation of radiation intensity and         |      |
|          | relevant variation in the measured output        |      |
|          | pumping rates.                                   | 47   |
| 40       | Array efficiency averages at different values of |      |
|          | solar radiation intensity                        | 48   |

# VII

| Fig. No. |                                               | Page |
|----------|-----------------------------------------------|------|
| 41       | Pumping system efficiency average at deferent |      |
|          | values of solar radiation intensity           | 49   |
| 42       | Overall average efficiency of the system at   |      |
|          | different average solar radiation levels      | 50   |

### VIII

#### LIST OF ABBREVIATIONS

**Abbreviation Definition** 

A : Ampere

AC : Alternative current

DC : Direct current

Ea : Array efficiency

Es : Subsystem efficiency

Eo : Overall efficiency

H : Pumping head, (m)

Hr : Hour

I : Current, (A)

NOCT : Nominal operating cell temperature

Ph : Hydraulic power, (W)

Pi : Input Power, (W)

Pmax : Maximum rated power of PV module, (W)

Po : Output power of PV array, (W)

PV : Photovoltaic

PVP : Photovoltaic pumping system

PVWP : Photovoltaic water pumping system

Q : Pumping discharge, (m³/hr)

Rs : Solar radiation intensity, (W/m<sup>2</sup>)

STC : Standard test conditions

V : Volt

Vmp : Maximum point output voltage, (V)

#### INTRODUCTION

The world is witnessing in the current period, an increase in the steady population growth and a marked rise in the levels of culture, urbanization and luxury living. Thus, the horizontal expansion of the building industry becomes the element that fulfill the needs to accommodate the growing population, where they are in accordance with the standards and requirements of country laws in order to ensure a civilized urban planning that takes into account the achievement of the foundations of the integrated design for human use. These standards need to have green spaces and public spaces in size up to 80% of the total area of the project. Most landscapes depends on water essentially, whether used in the water features such as fountains, waterfalls and pools or to irrigate plants and even in the hydration and reducing air temperature. The presence of water in the landscape like plants is of the most important elements that brings life to the landscape.

The environmental problems are increasingly taking place in the daily lives of the population. Researchers, non-profit organizations and even companies are putting more attention to this subject that concerns everyone. A solution to these problems would be the use of alternative sources of energy, such as solar energy, which can be of great help in reducing the environmental impact of conventional sources. According to **Cometta (1978).** 

For the favorable solar radiation conditions in the country (5 to 8 kW h/m²/day with about 3500 sunshine hours per year), **Sorensen (2003)**, solar water pumping may be a competitive application for remote areas and luxurious areas where power may costs a lot. Even for landscapes within the city if it was our aim to reduce the burden on national subsidization for energy sources. Also, the solar cells can be formed in beautiful shapes and incorporated as part of landscaping, that which will be aesthetic functional garden element that gives a feeling of friendship to the environment. One may argue that solar photovoltaic water pumping

systems not only comprises an environmentally friendly solution, but also contributes substantially to the satisfaction of remote communities' water consumption needs **Kaldellis** *et al.* (2011).

Even though, the solar photovoltaic water pumping systems has significant advantages a lot of challenges are associated with the solar photovoltaic water pumping, especially in operation and maintenance.

Contemporary water displays rely heavily on historic precedent, with elements usually abstracted to satisfy broader design and environmental constraints. Historical models range from ancient irrigation systems to ornate displays within fountains. Often, modern displays are modeled after free flowing streams and falls within natural settings Charles *et al* (1997).

The objectives of this research were using photovoltaic to operate water pumping system for landscape, studying the factors that affect the system and evaluate system efficiency.