


# Classification of Electrocardiogram (ECG) signals for Diagnosis of Heart diseases

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

By

#### Hadeer Hussein Ibrahim El-Saadawy

Teaching Assistant at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Under Supervision of

#### Prof. Dr. Mohamed Fahmy Tolba

Professor of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University

#### Prof. Dr. Howida Abdel-Fattah Shedeed

Professor of Scientific Computing
Vice dean of graduate studies,
Faculty of Computer and Information Sciences,
Ain Shams University

#### Dr. Manal Mohsen Tantawi

Assistant Professor at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

> January – 2018 Cairo

#### Acknowledgment

First of all I thank Allah, the most merciful and gracious, who gave me the knowledge, patience and strength to complete this thesis, and blessed me with his inspired gifts to overcome the obstacles I encountered.

I would like to express my deep gratitude to my supervisors who I'm lucky to work under their supervision; Prof. Dr. Mohamed Tolba for his usual support, patience, encouragement and guidance, Prof. Dr. Howida Shedeed for her usual support, motivation and guidance and Dr. Manal Tantawi the one who I am lucky to have by my side not only a supervisor but an elder sister too, I extend my utmost gratitude and appreciation for your technical and scientific help, continuous supportive guidance in both technical and non-technical issues and for always believing in me. I am deeply thankful.

I would like to thank the world best gift, the most supportive family. I would like to thank Mum and Dad who have devoted themselves to support me in my whole life, not just this work for their endless passionate support and encouragement and the sleepless nights they spent to make it easier for me. And my sisters Mahitab, Alaa and Esraa for always being by my side in the downs and ups. Thanks my sisters for your usual moral support and special thanks for Alaa for her technical support.

My family, thanks for being the shoulder I can always depend on and for constantly pushing me to become the person I want to become and create the life I want for myself. This thesis dedicated to you, to make you proud. Without you, everything is nothing.

I would also like to thank the world best friend Yasmin Khaled for always being by my side. Thanks for your constant encouragement in the most difficult times, for accepting me through the tough time. I am really grateful to have you in my life.

Also, I want to thank my friends Eman Hamdi, Ghada Hamed, Alaa Atef, Alaa Salah, Doaa Mohsen and Aya Zaki for their motivational encouragement and support, without you it would have been much harder.

Last but not least, I would like to thank all my professors, colleagues and students who kept on encouraging me. Thank you for being in my life.

#### **Abstract**

The Electrocardiogram (ECG) has been introduced for decades as a powerful tool for diagnosing heart diseases. Hence, the automation of analyzing a rich source of information like ECG for diagnostic purposes is very crucial, since it helps 24-hour monitoring and instant discovering of cardiac disorders which need rapid medical aid in clinical situations.

Cardiac arrhythmias mean abnormal activities in the heart upon certain conditions and mainly consist of two types. One of them is life threatening and can cause death. On the other hand, the other type is cardiac arrhythmia which is our interest in this study. It needs attention to avoid deterioration, but it is not critical as life threatening as the first one. Thus, ECG heartbeats should be continuously examined and classified.

This thesis proposes an automatic reliable two-stage hybrid hierarchical method for ECG heartbeat classification. The heartbeats are segmented dynamically to avoid the consequences of the heart rate variability. Discrete Wavelet Transform (DWT) is utilized to extract morphological features that describe the segmented heartbeat. The extracted features are then reduced by using Principal Component Analysis (PCA). Subsequently, the resulted features along with four RR features are fed into a Support Vector Machine (SVM) to classify five categories (first stage). Thereafter, the heartbeats are further classified to one of the classes belonging to the assigned category (second stage). Two different strategies for classification have been investigated: One versus All and One versus One. The proposed method has been applied on data from lead 1 and lead 2. A new fusion step is introduced, where a stacked generalization algorithm is applied and different types of

classifiers have been examined. Experiments have been carried out using MIT-BIH database. The best overall and average accuracies obtained by the first stage are 98.40% and 97.50% respectively. For the second stage, 94.94% and 93.19% are the best overall and average accuracies obtained respectively. The best results are achieved using SVM with One versus One classification strategy for both stages and decision trees classifier for the fusion step.

### **Table of Contents**

| Acknowledg    | gment                                          |     |
|---------------|------------------------------------------------|-----|
| Abstract      |                                                | III |
| Table of Co   | ntents                                         | V   |
| List of Figur | res                                            | VII |
| List of Table | es                                             | X   |
| List of Abbi  | eviations                                      | XIV |
| Chapter 1.    | Introduction                                   | 2   |
| 1.1           | Thesis Motivations                             | 2   |
| 1.2           | Thesis Objectives                              | 3   |
| 1.3           | Thesis Achievements                            | 4   |
| 1.4           | Thesis Organization                            | 5   |
| Chapter 2.    | Medical Background                             | 7   |
| 2.1           | Heart Anatomy                                  | 7   |
| 2.2           | Blood Flow                                     | 8   |
| 2.3           | Heart Electrical Activity                      | 10  |
| 2.4           | Electrocardiogram (ECG)                        | 11  |
| 2.5           | Heart Diseases                                 | 13  |
| Chapter 3.    | Related Work                                   | 27  |
| 3.1           | General Overview                               | 27  |
| 3.2           | Related Studies                                | 29  |
| 3.3           | Comparative Analysis                           | 34  |
| Chapter 4.    | Proposed Method – A Hybrid Hierarchical Method | 38  |
| 4.1           | Dataset                                        | 39  |
| 4.2           | Pre-processing                                 | 40  |
|               | 4.2.1 Filtering                                | 40  |
|               | 4.2.2 QRS Detection                            | 41  |
|               | 4.2.3 Beats Segmentation                       | 42  |
| 4.3           | Features Extraction                            | 44  |
|               | 4.3.1 Morphological Features                   | 44  |
|               | a) Continuous Wavelet Transform (CWT)          | 45  |
|               | b) Discrete Wavelet Transform (DWT)            | 47  |
|               | c) Wavelet Families                            | 49  |
|               | 4.3.2 Dynamic Features                         | 50  |
| 4.4           | Features Reduction                             | 51  |
| 4.5           | Classification                                 | 52  |

|              | 4.5.1 Probabilistic Neural Networks (PNN)               | 53  |
|--------------|---------------------------------------------------------|-----|
|              | 4.5.2 Random Forest Trees                               |     |
|              | 4.5.3 Softmax Regression                                | 55  |
|              | 4.5.4 Decision Trees                                    |     |
|              | 4.5.5 Support Vector Machine (SVM)                      | 57  |
|              | a) One versus All SVM                                   |     |
|              | b) One versus One SVM                                   | 59  |
| 4.6          | Lead1 and Lead2 Fusion                                  | 60  |
|              | 4.6.1 First Stage Fusion                                | 60  |
|              | a) Rejection Method                                     | 60  |
|              | b) Stacked Generalization Method                        | 61  |
|              | 4.6.2 Second Stage Fusion                               | 61  |
| Chapter 5.   | Experimental Results                                    | 64  |
| 5.1          | Lead1 Results                                           | 65  |
|              | 5.1.1 SVM Classifier                                    | 65  |
|              | 5.1.2 PNN Classifier                                    | 67  |
|              | 5.1.3 Softmax Regression Classifier                     | 70  |
|              | 5.1.4 Random Forest Trees Classifier                    | 72  |
| 5.2          | Lead2 Results                                           | 75  |
|              | 5.2.1 SVM Classifier                                    | 75  |
|              | 5.2.2 PNN Classifier                                    | 77  |
|              | 5.2.3 Softmax Regression Classifier                     | 80  |
|              | 5.2.4 Random Forest Trees Classifier                    | 82  |
| 5.3          | Analysis of Lead1 and Lead2 Results                     | 85  |
| 5.4          | Different Classification Strategies With and Without RR |     |
| Featu        | res Results                                             |     |
| 5.5          | Results of Leads Fusion for First Stage                 | 89  |
| 5.6          | Results of Second Stage and Leads Fusion                | 91  |
| 5.7          | Analysis of First and Second Stages Results             | 92  |
| Chapter 6.   | Conclusion and Future Work                              | 97  |
| 6.1          | Conclusion                                              | 97  |
| 6.2          | Future Work                                             | 98  |
| List of Publ | ications                                                | 99  |
| References   |                                                         | 101 |

# **List of Figures**

| Figure 2. 1 Heart Anatomy [20]                                              |
|-----------------------------------------------------------------------------|
| Figure 2. 2 The blood flow in and out of the heart [20]                     |
| Figure 2. 3 The Heart Electrical Activity [24]                              |
| Figure 2. 4 An ECG trace and a magnified labeled heartbeat [24] 11          |
| Figure 2. 5 The interpretation for the three complexes of the ECG heartbeat |
| [24]                                                                        |
| Figure 2. 6 Normal Beat captured from MIT-BIH dataset for a) lead 1 and b)  |
| lead 2                                                                      |
| Figure 2. 7 Left Bundle Branch Block Beat captured from MIT-BIH dataset     |
| for a) lead 1 and b) lead 2                                                 |
| Figure 2. 8 Right Bundle Branch Block Beat Captured from MIT-BIH            |
| dataset for a) lead 1 and b) lead 2                                         |
| Figure 2. 9 Atrial Escape Beat captured from MIT-BIH dataset for a) lead 1  |
| and b) lead 2                                                               |
| Figure 2. 10 Nodal (Junctional) Escape Beat captured from MIT-BIH dataset   |
| for a) lead 1 and b) lead 2                                                 |
| Figure 2. 11 Atrial Premature Contraction Beat captured from MIT- BIH       |
| dataset for a) lead 1 and b) lead 2                                         |
| Figure 2. 12 Aberrated Atrial Premature Beat captured from MIT-BIH          |
| dataset for a) lead 1 and b) lead 2                                         |
| Figure 2. 13 Blocked Atrial Premature Beat captured from MIT-BIH dataset    |
| for a) lead 1 and b) lead 2                                                 |
| Figure 2. 14 Nodal (Junctional) Premature Beat captured from MIT-BIH        |
| dataset for a) lead 1 and b) lead 2                                         |

| Figure 2. 15 Premature Ventricular Contraction Beat captured from MIT-   | -   |
|--------------------------------------------------------------------------|-----|
| BIH dataset for a) lead 1 and b) lead 2                                  | 21  |
| Figure 2. 16 Ventricular Escape Beat captured from MIT-BIH dataset for   | a)  |
| lead 1 and b) lead 2                                                     | 21  |
| Figure 2. 17 Ventricular Flutter Wave Beat captured from MIT-BIH data    | set |
| for a) lead 1 and b) lead 2                                              | 22  |
| Figure 2. 18 Fusion of Ventricular and Normal Beat captured from MIT-    | BIH |
| dataset for a) lead 1 and b) lead 2                                      | 23  |
| Figure 2. 19 Fusion of Paced and Normal Beat captured from MIT-BIH       |     |
| dataset for a) lead 1 and b) lead 2                                      | 24  |
| Figure 2. 20 Unclassifiable Beat captured from MIT-BIH dataset for a) le | ead |
| 1 and b) lead 2                                                          | 24  |
| Figure 2. 21 The five main categories according to the ANSI/AAMI EC5     | 7:  |
| 1998 standard.                                                           | 25  |
| Figure 3. 1 Main Steps for ECG based heartbeat classification process    | 27  |
| Figure 4. 1 The main steps of the proposed hierarchical method           | 38  |
| Figure 4. 2 Normal beat a) before b) after preprocessing                 | 41  |
| Figure 4. 3 A segmented heartbeat using Equation (4. 2) with different   |     |
| values for the parameters "c" and "σ"                                    | 44  |
| Figure 4. 4 Frequency-time domain as represented by CWT                  | 47  |
| Figure 4. 5 Discrete Wavelet Decomposition [2]                           | 48  |
| Figure 4. 6 Haar Wavelet                                                 | 49  |
| Figure 4. 7 Daubechies wavelets Family                                   | 49  |
| Figure 4. 8 Biorthogonal Wavelets Family                                 | 50  |
| Figure 4. 9 The proposed hierarchical classification stages              | 53  |
| Figure 4. 10 PNN Architecture [69]                                       | 54  |
| Figure 4. 11 Softmax Regression Achitecture [72]                         | 56  |

| Figure 4. 12 Mapping the input data points into a high dimension features   |
|-----------------------------------------------------------------------------|
| space [75]                                                                  |
| Figure 4. 13 Building hyperplanes to separate between the data points and   |
| constructing the hyperplane that maximizes the margin [75] 58               |
| Figure 4. 14 One versus One SVM Classification strategy for first stage 59  |
| Figure 4. 15 The Rejection method                                           |
| Figure 5. 1 The discrete wavelet decomposition levels for both a) Lead1 and |
| b) Lead2                                                                    |
| Figure 5. 2 The final two-stage hierarchical method                         |

## **List of Tables**

| Table 3. 1 A brief survey on the key studies for Heart beat Classification 34 |
|-------------------------------------------------------------------------------|
| Table 4. 1 The training and testing percentages used in the experiments [1]   |
| 39                                                                            |
| Table 4. 2 The mapping to the five main categories according to the           |
| ANSI/AAMI EC57: 1998 standard [1]                                             |
| Table 4. 3 The number of beats used in testing the second level               |
| classification experiments                                                    |
| Table 5. 1 Lead1 using Fixed Segmentation Strategy and SVM Classifier. 65     |
| Table 5. 2 Lead1 using 1st Dynamic Segmentation Strategy and SVM              |
| Classifier                                                                    |
| Table 5. 3 Lead1 using 2nd Dynamic Segmentation Strategy and SVM              |
| Classifier                                                                    |
| Table 5. 4 Lead1 using 3rd Dynamic Segmentation Strategy and SVM              |
| Classifier                                                                    |
| Table 5. 5 Lead1 using Fixed Segmentation Strategy and PNN Classifier 68      |
| Table 5. 6 Lead1 using 1st Dynamic Segmentation Strategy and PNN              |
| Classifier                                                                    |
| Table 5. 7 Lead1 using 2nd Dynamic Segmentation Strategy and PNN              |
| Classifier                                                                    |
| Table 5. 8 Lead1 using 3rd Dynamic Segmentation Strategy and PNN              |
| Classifier                                                                    |
| Table 5. 9 Lead1 using Fixed Segmentation Strategy and Softmax                |
| Regression Classifier                                                         |
| Table 5. 10 Lead1 using 1st Dynamic Segmentation Strategy and Softmax         |
| Regression Classifier                                                         |

| Table 5. 11 Lead1 using 2nd Dynamic Segmentation Strategy and Softmax     |
|---------------------------------------------------------------------------|
| Regression Classifier                                                     |
| Table 5. 12 Lead1 using 3rd Dynamic Segmentation Strategy and Softmax     |
| Regression Classifier                                                     |
| Table 5. 13 Lead1 using Fixed Segmentation Strategy and Random Forest     |
| Trees Classifier                                                          |
| Table 5. 14 Lead1 using 1st Dynamic Segmentation Strategy and Random      |
| Forest Trees Classifier                                                   |
| Table 5. 15 Lead1 using 2nd Dynamic Segmentation Strategy and Random      |
| Forest Trees Classifier                                                   |
| Table 5. 16 Lead1 using 3rd Dynamic Segmentation Strategy and Random      |
| Forest Trees Classifier                                                   |
| Table 5. 17 Lead2 using Fixed Segmentation Strategy and SVM Classifier 75 |
| Table 5. 18 Lead2 using 1st Dynamic Segmentation Strategy and SVM         |
| Classifier                                                                |
| Table 5. 19 Lead2 using 2nd Dynamic Segmentation Strategy and SVM         |
| Classifier                                                                |
| Table 5. 20 Lead2 using 3rd Dynamic Segmentation Strategy and SVM         |
| Classifier                                                                |
| Table 5. 21 Lead2 using Fixed Segmentation Strategy and PNN Classifier 78 |
| Table 5. 22 Lead2 using 1st Dynamic Segmentation Strategy and PNN         |
| Classifier                                                                |
| Table 5. 23 Lead2 using 2nd Dynamic Segmentation Strategy and PNN         |
| Classifier                                                                |
| Table 5. 24 Lead2 using 3rd Dynamic Segmentation Strategy and PNN         |
| Classifier                                                                |

| Table 5. 25 Lead2 using Fixed Segmentation Strategy and Softmax               |
|-------------------------------------------------------------------------------|
| Regression Classifier                                                         |
| Table 5. 26 Lead2 using 1st Dynamic Segmentation Strategy and Softmax         |
| Regression Classifier                                                         |
| Table 5. 27 Lead2 using 2nd Dynamic Segmentation Strategy and Softmax         |
| Regression Classifier                                                         |
| Table 5. 28 Lead2 using 3rd Dynamic Segmentation Strategy and Softmax         |
| Regression Classifier                                                         |
| Table 5. 29 Lead2 using Fixed Segmentation Strategy and Random Forest         |
| Trees Classifier                                                              |
| Table 5. 30 Lead2 using 1st Dynamic Segmentation Strategy and Random          |
| Forest Trees Classifier                                                       |
| Table 5. 31 Lead2 using 2nd Dynamic Segmentation Strategy and Random          |
| Forest Trees Classifier                                                       |
| Table 5. 32 Lead2 using 3rd Dynamic Segmentation Strategy and Random          |
| Forest Trees Classifier                                                       |
| Table 5. 33 Results using SVM classifier for both lead1 and lead2, db8        |
| mother wavelet for lead1 and bior2.4 mother wavelet for lead2                 |
| Table 5. 34 Lead 1 and Lead 2 classification ten trials average results using |
| One versus All SVM classifier                                                 |
| Table 5. 35 Lead 1 and Lead 2 classification ten trials average results using |
| One versus One SVM classifier without and with RR features                    |
| Table 5. 36 Fusion classification ten trials average results using rejection  |
| method and stacked generalization with different classification               |
| methodologies in the second layer                                             |
| Table 5. 37 Average accuracy for classifying the classes of each category     |
| separately91                                                                  |

| Table 5. 38 Classification ten trials average results for category N, S and G | Q    |
|-------------------------------------------------------------------------------|------|
| for Lead2 and category V for Lead1 using One Versus One SVM                   |      |
| methodology                                                                   | . 92 |
| Table 5. 39 Comparison with the existing studies                              | . 94 |

#### List of Abbreviations

**Abbreviation Stands for** 

AE Atrial Escape

ANN Artificial Neural Network

AP Aberrated Atrial Premature

APC Atrial Premature Contraction

AV AtrioVentricular

BAP Blocked Atrial Premature

DWT Discrete Wavelet Transform

ECG ElectroCardioGram

FPN Fusion of Paced and Normal

ICA Independent Component Analysis

KPCA Kernel Principal Component Analysis

LBBB Left Bundle Branch Block

LDA Linear Discriminant Analysis

NE Nodal (Junctional) Escape

NN Neural Network

NOR NORmal

NP Nodal (Junctional) Premature

PCA Principal Component Analysis

PNN Probabilistic Neural Network

PVC Premature Ventricular Contraction

RBBB Right Bundle Branch Block

SA SinoAtrial

SVM Support Vector Machine

UN UNclassifiable

VE Ventricular Escape

VF Ventricular Flutter Wave

VFN Fusion of Ventricular and Normal

WT Wavelet Transform