AMINO ACID SUBSTITUTION IN HEPATITIES C VIRUS CORE AND GENETIC VARIATION IN INTERLEUKIN 28BGENE AND THEIR CORRELATION TO INTERFERON TREATMENT FAILURE IN CHRONIC HCV EGYPTIAN PATIENTS

A thesis submitted for award of the degree of Doctor of philosophy in science (Ph.D.) in Zoology (Genetics)

By Maiada Hussien Ahmed Hussien B.Sc. (Zoology-Chemistry) 2003 (M.Sc. Zoology, 2010) Supervised by

Dr/ Mohamed Abd EL Mordy Dr/ Mohamed Amen Sakr Mohamed

Professor of Genetics

Zoology Department

Faculty of science

Ain Shams University

Professor of Tropical Medicine

Faculty of Medicine

Ain Shams University

Dr/ Hany Mansour Dabbous

Assistant Professorof Tropical Medicine

Faculty of Medicine

Ain Shams University

Dr/ Nashwa Nagy El Khazragy Dr/ Amany Mohamed Maher

Consultant of Clinical Pathology Colleague of Biochemistry

Faculty of Medicine Medical Research Center

Ain Shams University Faculty of Medicine

Ain Shams University

Ain Shams University Faculty of science Zoology Department (2017)

Acknowledgement

First of all, great thanks and praises to *ALLAH* who gave me strength and patience to accomplish to this work. Really, no word can express how grateful I am to *ALLAH*.

I am indebted to

Prof. Dr. Mohamed Abd EL Mordy Mohamed, professor of Genetics, Faculty of science, Ain Shams University, for his guidance, valuable criticism and continuous encouragement. The words not be enough to express my thanks to his continual support during the whole work. Without his help it was a sort of impossibility to accomplish this work.

A great thanks to

Prof.Dr. Mohamed Amen Sakr, Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for the continuous support for my study, for his patience, motivation, and immense knowledge. His guidance helped me in all the time.

Dr. Hany Mansour Dabbous, Assistant Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his expertise supervision, generous guidance and encouragement to fulfill this work.

It is a great honour for me to express my deepest feelings and sincere gratitude to

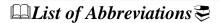
*Dr. Nashwa Nagy El Khazragy*Fellow of Clinical Pathology, Hematolgy, Faculty of Medicine, Ain Shams University, for supporting me throughout my study. I would like to thank her for step by step guidance and assistance to

complete this work. The words cannot express my thanks to her kind supervision.

Dr. Amany Mohamed Maher Colleague of Biochemistry Medical Research Center, Faculty of Medicine, Ain Shams University for her continuous encouragement, her potential cooperation and direction, her great effort extended to me and her contribution towards the final accomplishment this work.

I am grateful to my *parents* and my *sibling* who have provided me through moral and emotional support in my life. I am also grateful to my other family members and friends who have supported me along the way.

A deep thanks to **Zoology Department** for their assistance and support during my work.



Contents

	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
Abstract	VIII
Chapter I: Introduction and Aim of the work	1
Chapter II: Review of literature	4
Part (I): Hepatitis C virus	4
I.1. Taxonomy	4
I.2. Structure	4
I.3. Genome	5
I.4. Molecular biology	6
I.5. Genotypes	8
I.6. Prevalence of HCV in Egypt	11
I.7. Clinical importance	12
I.8. Hepatitis C infection.	12
I.8.1. Acute Hepatitis C.	12
I.8.2. Chronic hepatitis C	13
Part (II): ANTI-HCV DRUGS	16
II.1. Interferon	16
II.2. Ribavirin.	17
Part (III): Interleukin	18
III 1 Studies on II -28	19

□Contents ₹

III.2. Clinical significance.	19
III.3. Host interleukin 28B (IL28B) genotype and SVR	20
III.4. Correlation between ISGs expression and IL28B SNPs	21
Part (VI): Amino acid substitutions of HCV core (R70Q) and (L91M)	23
Chapter III: Subjects and methods	27
1- Methods	28
2. Detection of Amino Acid Substitutions (70 aa mutation) - (Arg70) or glutamine/ histidine	
(Gln70/His70)) in the HCV Core Regions	29
2.1. RNA extraction	29
2.2. Reverse Transcription and cDNA synthesis	32
2.3. Quantitative Real Time PCR (qRT-PCR)	33
3. Genotyping of the IL28B polymorphism	37
3.1: DNA extraction	37
3.2: DNA quantitation	38
3.3: Detection of IL28B polymorphism rs8099917 (G/T Transversion Substitution Mutation) by real-	40
time PCR	46
Chapter IV: Results Chapter V: Discussion	70
_	78
Chapter VI: Summary and conclusions	1
A CADICSHMINAEV	1

List of Abbreviations

aa :amino acids

ALT : Alanine transaminase

AST : Aspartate transaminase

BSF-2 : B-cell stimulatory factor-2

CHC : Chronic hepatitis C virus

CRF: Cytokine receptor family

D.Bil : Direct bilirubin

DNA : Desoxyribo nucleic acid

dsRNA : double-stranded RNA

EDF : Eosinophil differentiation factor

FDA: Food and Drug Administration

FRET : Fluorescence resonance energy transfer

GCSF : Granulocyte colony-stimulating factor

GMCSF: Granulocyte-macrophage colony stimulating factor

GWAS: Genome-wide association studies

HAV : Hepatitis A virus

☐List of Abbreviations ₹

Hb : Hemoglobin

HBV : Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV : Hepatitis C virus

HDV : Hepatitis D virus

HIV : Human Immunodeficiency Virus

HOMA-IR: Homeostasis model assessment-Insulin Resistance

IFNs : Interferons

Ig : Immunoglobulin

IL : Interleukin

IL28B : Interleukin 28B gene

Ind.Bil: Indirect bilirubin

IPC : Internal Positive Control

IR : Insulin resistance

IRES: Internal ribosome entry site

IRS : Insulin receptor substrate

ISDR : IFN-sensitivity-determining region

ISGF3 : IFN-stimulated gene factor 3

☐ List of Abbreviations ₹

ISGs : Interferon-stimulated genes

LFTs : liver function tests

MGF : Myelomonocytic growth factor

MHC : Major histocompatibility complex

NK : Natural killer

NPV : Negative predictive value

NS : Non-structural

NS3-4A : Serine protease

NVR : Non-virological response

PBMCs : Peripheral blood mononuclear cells

PCR : Polymerase chain reaction

Peg IFN: Pegylated interferon

PPV : positive predictive value

qRT-PCR : Real time PCR

RBV : Ribavirin

RNA : Ribonucleic acid

Rntp : Ribonucleoside triphosphates

RT-PCR: Reverse-transcriptase polymerase chain reaction

☐List of Abbreviations ₹

SNP : Single nucleotide polymorphism

SOCS : Suppressor of cytokine signalling

STAT: Signal transducer and activator of transcription

SVS : Sustained virological response

T.Bil : Total bilirubin

Th : T helper

TLC : Total leucocyte count

TLRS : Toll Like Receptors

TM : Transmembrane

UTR : Untranslated region

VAP : Vesicle associated membrane protein

☐List Of Tables ₹

		Page
Table (1):	Contents of master mix	33
Table (2):	Sequence of primers for PCR reaction	34
Table (3):	Real time PCR Reaction Mix	35
Table (4):	PCR Cycling Program	36
Table (5):	Distribution of Demographic data among studied patients	47
Table (6):	The association of different Haematological Parameters among the different studied groups.	48
Table (7):	The association of different Biochemical Parameters among the different studied groups	49
Table (8):	Distribution of different genotypes of IL-28B (G/T) rs8099917	50
Table (9a):	Distribution of G, T alleles in IL28 β Polymorphism (G/T) rs8099917	51
Table (9b):	T/G Alleles frequency in G/T IL28β polymorphism.	52

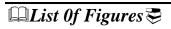

☐List 0f Tables ₹

Table (10):	Frequencies of level of viremia among IL-28β (rs8099917) genotypes at baseline and follow upintervals	54
Table (11):	Association between HCV-RNA viral load and HCV core 70aa mutations genotypes in HCV-4 patients	56
Table (12):	Comparison of IL-28β (rs8099917) genotype among different age and sex subgroups	57
Γable (13):	Comparison of HCV core 70 aa mutation genotype among different age and sex subgroups	59

List of Tables

☐List Of Tables ₹

Table (14):	Comparison of IL-28 β (rs8099917) and HCV core 70aa mutation genotypes among different age and sex subgroups with Viral response to INF/RBV treatment.	62
Table (15):	Comparison between mean values of Haematological / Biochemical Parameters in patients according to IL-28β (rs8099917) genotypes	64
Table (16):	Comparison between mean values of Haematological / Biochemical Parameters in patients according HCV core 70 aa mutation genotype	66
Table (17):	Baseline Independent Predictors of SVR with corresponding Odds ratio	68

List of Figures

		Page
Figure (1):	Simplified diagram of the structure of the Hepatitis C virus particle	5
Figure (2):	Genome organization of Hepatitis C virus	6
Figure (3):	Genotype distribution is worldwide	10
Figure (4a):	Amplification plot curve for homozygous GG IL28B	43
Figure (4b):	Amplification plot curve for homozygous TT IL28B.	43
Figure (4c):	Amplification plots of the heterozygous GT IL28B.	43
Figure (5a):	Illustrated IL28B negative controls amplification plot.	44
Figure (5b):	Illustrated IL28B positive controls amplification plot.	44
Figure (6):	Distribution of age and sex among studied patients.	47

List 0f Figures

Figure (7):	Distribution of different genotypes of IL-28B (G/T) rs8099917	50
Figure (8):	Distribution of G/T alleles among G/T IL28B polymorphism	52