Evaluation of Augmentation Cystoplasty Procedures Used in Ain Shams University during Ten Years Duration

Thesis

Submitted for partial fulfillment of Master Degree in General surgery

ByKhaled Gomaa Mohammed
M.B.,B.Ch.

Under the Supervision of

Professor Dr. Sameh Abdel-Hay Abdel Hameed

Professor of pediatric surgery Faculty of Medicine Ain Shams University

Professor Dr. Amr Abdel-Hameed Zaky

Assistant Professor of Pediatric Surgery Faculty of Medicine Ain Shams University

Dr. Ahmed Bassiouny Arafa Radwan

Lecturer of Pediatric Surgery Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2016

سورة طه الآيه رقم ١١٤

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Professor Dr. Sameh Abdel-Hay Abdel Hameed,** Professor of pediatric surgery, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Professor Dr. Amr Abdel-Hameed Zaky**, Assistant Professor of Pediatric Surgery, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I am deeply grateful to **Dr. Ahmed Bassiouny Arafa Radwan**, Lecturer of Pediatric Surgery, Faculty of Medicine, Ain Shams University for his great supervision, great help, available advises, continuous encouragement and without his support it was impossible for this study to be achieved in this form. I had the privilege to benefit from her great knowledge, and it is an honor to work under his guidance and supervision.

Last but not least, I dedicate this work to my mother and my fater, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Khaled Gomaa Mohammed

Contents

List of AbbreviationsList of Tables	i iii
List of Figures	V
Introduction and Aim of the Work	1
Review of Literature	4
Chapter 1 History of Augmentation Cystoplasty Chapter 2	4
Indications for Bladder Augmentation Chapter 3	9
Types and Techniques Chapter 4	19
Complications of Augmentation Cystoplasty	56
Patients and Methods	77
Results	80
Discussion	101
Summary	119
Conclusion and Recommendations	121
References	122
Arabic Summary	

List of Abbreviations

AUS : Artificial Urinary Sphincter.

CBC : Complete blood Picture.

CISC : Clean Intermittent Self Catherization.

DNA : Deoxyribonucleic acid.

DTPA : Di ethyl tetra pentyl acetic acid.

ESRD : End Stage Renal Disease.

GFR : Glomerular Filtration Rate.

H-D Syndrome: Hematuria Dysuria Syndrome.

HN : Hydronephrosis.

IVU : Intravenous Urogram.

MRI : Magnetic Resonance Imaging.

MRU : Magnetic Resonance Urogram.

NGVD : Neurogenic Bladder Dysfunction.

PGA : Poly glycolic acid.

PUV : Posterior Urethral Valve.

List of Abbreviations (Cont.)

SBO : Small Bowel Obstruction.

US : Ultra Sound.

UTI : Urinary Tract Infection.

VCUG : Voiding Cystourethrogram.

VURD : Vesico ureteral Reflux, dysplastic kidney.

List of Tables

Table.	Title	Page
1	The relative advantages of different	20
	commonly used types of augmentation	
	cystoplasty	
2	The relative advantages and	23
	disadvantages of different enteric	
	segments used for augmentation	
3 4	Age distribution	80
	Etiology of bladder dysfunction	82
5	The different techniques used in the	83
	study	
6	The relationship between the etiology	84
	and techniques	
7	The incidence of VUR preoperatively as	87
	well as the site of refluxing units in	
	relation to the etiology	
8	The different techniques used in the	88
	management of the refluxing units and	
	the outcomes	
9	The distribution of hydronephrosis in	90
	relation to the etiology	
10	The distribution of non refluxing	91
	hydronephrosis in relation to the	
	etiology	
11	Post operative change in hydronephrosis	92
12	Post operative change in hydronephrosis	93
	in relation to the presence of reflux	
13	The mean change in creatinine level	94
14	The change in bladder capacity with	97
	different techniques used for	
	augmentation	

List of Figures

Fig.	Title	Page
1	Voiding cystourethrogram (VCUG) of a	10
	case of PUV.	
2	Exstrophy in a male child.	11
3	MRI picture of tethered cord.	12
4	Plain X- ray of a case of saeral agenesis.	13
5	The methods of opening the bladder for	25
	augmentation.	
6	Rectangular gastric flap for bladder	26
	augmentation.	
7	Wedge flap for bladder augmentation.	27
8-12	Steps of augmentation ileocystoplasty.	29
13-17	Steps of augmentation ilececoplasty.	34
18-19	Steps of colocysplasty.	39
20-21	Using the ureter for augmentation	42
	cystoplasty.	
22a-b-c	Bladder autoaugmentation.	45
23	Age distribution	81
24	Etiology of bladder dysfunction	82
25	The techniques used for augmentation	83
26	Graphic presentation of the relationship	85
	between the etiology and techniques	
27	The incidence of VUR preoperatively as	87
	well as the site of refluxing units	
28	Represent the percentage in change of	89
	the refluxing units with and without	
	ureteric re-implantation	

List of Figures (Cont.)

Fig.	Title	Page
29	The distribution of hydronephrosis in	90
	relation to the etiology	
30	The distribution of hydronephrotic renal	91
	units regarding the etiology and the	
	presence of reflux	
31	Post operative outcome regarding	92
	hydronephrosis.	
32	The mean change in creatinine level	94
33	The change in bladder capacity with	97
	different techniques used for	
	augmentation	

Abstract

The main concerns in the management of significant anatomical or functional urinary tract abnormalities in the pediatric age group is to preserve the renal functions followed by offering a socially accepted continence or dry status and lastly the future of the child as an adult regarding the sexual and reproductive abilities.

Augmentation cystoplasty is indicated for treatment of low bladder compliance and reduced bladder capacity secondary to infectious, inflammatory, neurogenic and congenital disorders.

The aim of present thesis was to evaluate the results of augmentation cystoplasty techniques as a treatment of hypocompliant bladder and the most common complication arising.

Twenty cases were chosen for this study, within pediatric age group. The cases were chosen according to some inclusion & exclusion criteria.

Ileocystoplasty was by far the most commonly used operative modality.

Long term follow up is still needed to judge the complications of the techniques used in this study.

The results were discussed and confronted with those of previous investigators.

Key words: augmentation cystoplasty, Neurogenic Bladder, Vesico ureteral Reflux, Urodynamics.

Introduction

Augmentation ilecystoplasty was first described in the dog by tizzoni and foggi in 1888 and in man by von miculicz in 1889. However it was not often used until the 1950s, when couvelaire popularized it for the treatment of the small contracted tuberculous bladder (**Greenwell et al., 2001**).

Currently augmentation cystoplasty is indicated for treatment of low bladder compliance and reduced bladder capacity secondary to infectious inflammatory neurogenic and congenital disorders (**Duel et al., 1998**).

Many surgeons had carried out augmentation for many reasons using different types of tissue. The ideal augmentation material would be autologous lined by transitional cell epithelium with contractile ability and elasticity (Churchill et al., 1993).

Most of the segments of the gastrointestinal tract have been used for augmentation cystoplasty (Churchill et al., 1993). Traditional augmentation cystoplasty using gastrointestinal segments is known to be associated with metabolic abnormalities; stone formation and alterations in the bladder causing potential carcinogenesis (Mathoera et al., 2000).

De-epithelization of the bowel segment to avoid the incorporation of gastrointestinal mucosa in the urinary tract is tried in animal models and in humans using chemical,

enzymatic and argon laser with satisfactory primary results (Demirbilek et al., 2001).

Bladder augmentation using a ureteric segment was popularized as a mean to achieve increased low pressure bladder capacity using native urothelium (Churchill et al., 1993). This method is practically applicable only to patients with unilateral hydroureteronephrosis with an ipsilateral nonfunctioning kidney (Greenwell et al., 2001), or in the presence of bilateral hydroureteronephrosis by using the distal ends of both ureters for augmentation with bilateral ureteric reimplantation (kilciler et al., 2000), or by doing transureteroureterostomy and augmentation using the distal part of one ureter (Churchill et al., 1993).

Autoaugmentation or detrusor myotomy was proposed as available alternative when a small increase in capacity and compliance is required (Cartwrigh et al., 1989).

Current interest and research is directed towards the use of bladder acellular matrix graft as an alternative with early reports of promising results in animal models (**Probst** et al., 2000).

Aim of the Work

The aim of present thesis is to evaluate the results of augmentation cystoplasty as a treatment of hypocompliant bladder in children in pediatric surgery department Ain Shams University during the ten years period from 2003 till 2013.

Chapter 1 **History of Augmentation Cystoplasty**

The main concerns in the management of significant anatomical or functional urinary tract abnormalities in the pediatric age group is to preserve the renal functions followed by offering a socially accepted continence or dry status and lastly the future of the child as an adult regarding the sexual and reproductive abilities (**Biers et al.,2012**).

A small-capacity, high-pressure, poorly complaint or unstable bladders will cause either deterioration of the upper tract or a social problem regarding continence or both (**Luis et al., 2014**).

Many patients with small-capacity, high pressure, poorly compliant or unstable bladders will be managed successfully with pharmacological or other conservative measure (**Greenwell et al., 2001**). A small but significant minority of these patients will require surgical intervention aiming at providing urinary storage whilst preserving renal function, continence, resistance to infection and convenient voluntary and complete emptying (**Biers et al., 2012**).

Augmentation ileocystoplasty was first described in the dog by Tizzoni in 1888 by connecting a loop of ileum to the bladder neck and in man by von Mikulicz in 1889 (Sountoulides et al., 2009).

During the late nineteenth and early twentieth centuries there were multiple attempts at bladder substitution, usually involving some form of rectal pouch. Unfortunately, in the pre-antibiotic era results in humans tend to be poor, tempering enthusiasm for these procedures (Biers et al., **2012).** During the 1950s interest in bladder augmentation was renewed when Couvelaire popularized it for the treatment of the small contracted bladder of tuberculosis. Initial results were poor because the procedures were performed before the era of successful anti-tuberculous chemotherapy. Couvelaire stressed on the importance of resecting the bladder with retention of the trigone because of its sensory function (Figueiredo et al., 2006). Kuss in 1959 and Gil-Vernet in 1960s stressed the protection afforded to the upper tract by the ileo-cecal valve if the ureters were implanted into the ileal tail (Basic et al., 2007).

During the subsequent decades the use of these procedures increased rapidly as the technical aspects of these surgeries were defined. Many surgeons have carried out augmentation for many reasons, using many different types of tissue (Greenwell et al., 2001). Virtually all segments of the gastrointestinal tract have been used successfully in augmentation cystoplasty (Escudero et al., 2011) which was supported by two important events, the first is the introduction of clean intermittent self catheterization (CISC) as a way to evacuate the bladder in 1972 by Lapides (Lapides et al., 1972), and the second is the principle of detubularization. Hinmann in 1988 has described the advantages of detubularization and reconfiguration of the