

ENHANCING PLASMONIC PHOTOVOLTAIC USING EMBEDDED METAL NANOPARTICLES

By

Marina Medhat Rassmi Melek

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

ENHANCING PLASMONIC PHOTOVOLTAIC USING EMBEDDED METAL NANOPARTICLES

By Marina Medhat Rassmi Melek

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in **Engineering Physics**

Under the Supervision of

Prof. Alaa K. Abdelmageed

Prof. Ezzeldin A. Soliman

Professor

Professor and Chair

Engineering Mathematics and Physics Department Faculty of Engineering, Cairo University Physics Department School of Science and Engineering, American University in Cairo

Dr. Yasser M. El-Batawy

Associate Professor

Engineering Mathematics and Physics Department Faculty of Engineering, Other University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

ENHANCING PLASMONIC PHOTOVOLTAIC USING EMBEDDED METAL NANOPARTICLES

By

Marina Medhat Rassmi Melek

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Engineering Physics

Approved by the Examining Committee:	
Prof.Alaa K. Abdelmageed,	Main Advisor
Prof.Ezzeldin A. Soliman,	Advisor
(School of Science and Engineering, Americ	an University in Cairo)
Dr. Yasser M. El-Batawy,	Advisor
Prof.Adel Abdelkader Mohsen,	Internal Examiner
Prof.Amr Mohamed Ali Shaarawi,	External Examiner
(School of Science and Engineering, Americ	an University in Cairo)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

Engineer's Name: Marina Medhat Rassmi Melek

Date of Birth: 28/09/1990 **Nationality:** Egyptian

E-mail: marinamedhat2011@gmail.com

Phone: 01004473480

Address: Engineering Mathematics and Physics

Department, Cairo University,

Giza 12613, Egypt

Registration Date: 01/03/2014 **Awarding Date:**/2017

Degree: Master of Science

Department: Engineering Mathematics and Physics

Supervisors:

Prof. Alaa K. Abdelmageed

(School of Science and

Prof.Ezzeldin A. Soliman Engineering, American

University in Cairo)

Dr. Yasser M. El-Batawy

Examiners:

Prof.Alaa K. Abdelmageed (Main Advisor)
Prof.Ezzeldin A. Soliman (Advisor)
Dr.Yasser M. El-Batawy (Advisor)

Prof.Adel Abdelkader Mohsen (Internal Examiner)
Prof.Amr Mohamed Ali Shaarawi (External Examiner)

(School of Science and Engineering, American University in Cairo)

Title of Thesis:

Enhancing Plasmonic Photovoltaic Using Embedded Metal Nanoparticles

Key Words:

Photovoltaic; Plasmonic; Metal Nanoparticles; Nanoantennas; Plasmonic Solarcells **Summary:**

Plasmonic Photovoltaic is a promising way to enhance the thin film photovoltaic (PV) efficiency. Gear shape nanoparticles are introduced to enhance the PV efficiency via increasing the power absorbed by the PV semiconductor in the visible and near infrared ranges. The modes of the gear nanoparticles are investigated. A parametric study is performed that demonstrates how the design parameters of the proposed nanoparticles can be engineered for best power absorption within Si. A Figure of Merit (FoM) is defined that consider all objectives. An optimization process is carried out and the optimum gear's dimensions, penetration depth, and periodicity are obtained for the maximum FoM. Then, a model for PIN-PV with embedded gear nanoparticles is presented for 1D and 2D structures. The enhancement of the embedded gear nanoparticles on the J-V characteristics of the PV is studied, and J-V characteristics corresponding to maximum FoM is presented.

Acknowledgments

I would never have been able to finish my dissertation without the guidance of my committee members, help from friends, and support from my family.

First and foremost I offer my sincerest gratitude to my supervisors, Prof. Alaa K. Abdelmageed, Prof. Ezzeldin A. Soliman, and Dr. Yasser M. El Batawy who have supported me throughout my thesis with their patience and knowledge. I attribute the level of my Masters degree to their encouragement and effort and without them this thesis would not have been completed or written. One simply could not wish for a better or friendlier supervisors.

Besides my supervisors, I would like to thank my friends and fellow TAs; Mostafa Radwan, Ahmed Reda, Islam Hashem, Amr Mahmoud, Mohamed Zaghloul, Ahmed Yheia, and Islam Sayed for always been there for me showing their help and support.

Last but not the least, I would like to thank my family for giving birth to me at the first place and supporting me spiritually throughout my life.

Marina Medhat

To my family and all my friends

Table of Contents

A	cknov	vledgments	i
Ta	ble o	f Contents	iii
Li	st of]	Figures	v
Li	st of S	Symbols and Abbreviations	ix
Li	st of l	Publications	xii
Ał	ostrac	et	xiii
1	Intr	oduction	1
	1.1	Motivation	1
	1.2	Photovoltaics (PV) Fundamentals	1
	1.3	Plasmonics Fundamentals	2
	1.4	Plasmonic Photovoltaics	3
	1.5	Thesis Objectives	4
	1.6	Thesis Structure	5
2	Plas	smonic Nanoparticles	6
	2.1	Introduction	6
	2.2	Traveling versus Standing Wave Plasmonic Modes	6
	2.3	Proposed Plasmonic Gear Nanoparticle	9
	2.4	Parametric Study of the Gear Nanoparticle	12
3	Plas	smonic Photovoltaic	19
	3.1	Introduction	19
	3.2	Absorption in Conventional PVs	19
	3.3	Absorption in Plasmonic PVs	24

	3.4	Figure of Merit (FoM) of Plasmonic PVs	31
	3.5	Optimum Design and Sensitivity Analysis	37
4	Phot	tocurrent of Plasmonic PIN PV	41
	4.1	Introduction	41
	4.2	Theoretical Model:	41
	4.3	Photovoltaic Efficiency	41
	4.4	Photovoltaic Current	43
	4.5	Plasmonic Photovoltaic Current	47
5	Con	clusion and Suggested Future Work	57
	5.1	Summary of research	57
	5.2	Suggested Future work	57
Re	feren	ices	59
A	PIN	Mathematical Analysis	63
	A.1	Introduction	63
	A.2	Poisson's Equation	63
	A.3	Continuity Equation	64
		A.3.0.1 For Electrons:	64
		A.3.0.2 For Holes:	64
	A.4	Finite Difference Discritization	66
		A.4.1 1D Meshing	66
			70
		A.4.2 2D Meshing	70

List of Figures

1.1	Absorption Coefficient of Silicon	2
1.2	Comparison between PN junction and PIN junction structure and Field	3
1.3	(a) Light trapping by nanoparticles from metal nanoparticles on the top	
	surface of the solar cell. Light is scattered and trapped into the substrate	
	at a higher angle, increasing the path length. (b) Light absorption	
	enhancement in the semiconductor by embedded nanoparticles due to the	
	enhanced near field of the nanoparticles. (c) Light trapping by coupling	
	to guided modes of the solar cell from nanopatterned metallic back	
	contacts.[18]	4
2.1	Permittivity of the Aluminium, Copper, Gold, and Silver, versus the	
	wavelength: (a) real part, ϵ'_r , and (b) imaginary part, ϵ''_r	7
2.2	Surface Plasmon Polariton, i.e. surface wave mode	8
2.3	Extinction cross-section of cube, disk, and sphere nanoparticles	10
2.4	Geometry of the proposed gear nanoparticle	11
2.5	Extinction cross-section versus wavelength for a gear nanoparticle with	
	$D_1 = 80$ nm, $D_2 = 110$ nm, $\theta = 40^\circ$, $\Phi = 45^\circ$, and $T = 25$ nm surrounded	
	by free-space	11
2.6	Co-polar electric field distribution of a gear nanoparticle with dimensions	
	$D_1 = 80 \text{ nm}, D_2 = 110 \text{ nm}, \theta = 40^{\circ}, \Phi = 45^{\circ}, \text{ and } T = 25 \text{ nm at } f = 485$	
	THz. (a) Top View, (b) Sectional View	13
2.7	Co-polar electric field distribution of a gear nanoparticle with dimensions	
	$D_1 = 80 \text{ nm}, D_2 = 110 \text{ nm}, \theta = 40^{\circ}, \Phi = 45^{\circ}, \text{ and } T = 25 \text{ nm at } f = 620$	
	THz. (a) Top View, (b) Sectional View	14
2.8	Disk nanoparticle extinction cross-section versus wavelength with	
	diameter $D = 110$ nm, and thickness of 25 nm	14

2.9	Co-polar electric field distribution at $f = 605$ THz of a disk nanoparticle	
	with dimensions $D = 110$ nm, and thickness of 26 nm. (a) Top View, (b)	
	Sectional View	15
2.10	Extinction cross-section spectrum of the gear nanoparticle with different	
	inner diameters D_1 , $D_2 = 110$ nm, $\theta = 40^\circ$, $\Phi = 45^\circ$, and $T = 25$ nm	15
2.11	Extinction cross-section spectrum of the gear nanoparticle with different	
	outer diameters D_2 , $D_1 = 80$ nm, $\theta = 40^\circ$, $\Phi = 45^\circ$, and $T = 25$ nm	16
2.12	Extinction cross-section spectrum of the gear nanoparticle with different	
	arm angle θ , $D_1 = 80$ nm, $D_2 = 110$ nm, $\Phi = 45^{\circ}$, and $T = 25$ nm	17
2.13	Extinction cross-section spectrum of the gear nanoparticle with different	
	gear thickness T , $D_1 = 80$ nm, $D_2 = 110$ nm, $\Phi = 45^{\circ}$, and $\theta = 40^{\circ}$	17
3.1	Scattering Matrix Model (SMM)	22
3.2	S-parameters of a wave incident on Si block of thickness 100 nm	23
3.3	Power absorption inside Si block of thickness 100 nm	23
3.4	S-parameters of a wave incident on Si block with thickness 100 nm and	
	backed by 50 nm silver plate	24
3.5	Power absorption inside Si block with thickness 100 nm and backed by	
	50 nm silver plate	25
3.6	S-parameters of a wave incident on Si block with thickness 100 nm,	
	backed by 50 nm silver plate with, 20 nm glass cover	25
3.7	Power absorption inside Si block with thickness 100 nm, backed by 50	
	nm silver plate with, 20nm glass cover	26
3.8	S-parameters of a wave incident on Si block with thickness of 200 nm	26
3.9	Power absorption inside Si block with thickness of 200 nm	27
3.10	Gear nanoparticle embedded in Si block	28
3.11	Total absorption of Si with gear nanoparticle of $D_1 = 40$ nm, $D_2 = 70$ nm,	
	$\theta=40^{\circ},\varphi=45^{\circ},T=25$ nm, and periodicity 200 nm versus wavelength	29
3.12	Comparison of the total absorption of Si only, Si with disks nanoparticles	
	with $D = 70$ nm and Si with gear nanoparticles	29
3.13	Solar spectrum irradiance	30
	Si absorption with embedded gear nanoparticle array with different	
	penetration depth d, D_1 = 508 nm, D_2 = 556 nm, θ = 31°, T = 40 nm,	
	and $P = 957$ nm: (a) without considering solar irradiance and (b) with	
	considering solar irradiance	32

3.15	Si absorption with embedded gear nanoparticle array with different	
	periodicity P, D_1 = 508 nm, D_2 = 556 nm, θ = 31°, T = 40 nm, and d =	
	15 nm: (a) without considering solar irradiance and (b) with considering	
	solar irradiance	33
3.16	FoM versus inner diameter D_1 of a gear plasmonic PV with $D_2 = 556$ nm,	
	$T=40$ nm, $\theta=40^{\circ}$, d = 15 nm, and $P=957$ nm	34
3.17	FoM versus outer diameter D_2 of a gear plasmonic PV with $D_1 = 508$ nm,	
	$T = 40 \text{ nm}, \ \theta = 40^{\circ}, \ d = 15 \text{ nm}, \ \text{and} \ P = 957 \text{ nm}.$	34
3.18	FoM versus arm angular span of a gear plasmonic PV with $D_1 = 508$ nm,	
	$D_2 = 556 \text{ nm}, T = 40 \text{ nm}, d = 15 \text{ nm}, \text{ and } P = 957 \text{ nm}. \dots \dots \dots$	35
3.19	FoM versus particle thickness T of a gear plasmonic PV with $D_1 = 508$	
	nm, $D_2 = 556$ nm, $\theta = 31^\circ$, $d = 15$ nm, and $P = 957$ nm	35
3.20	FoM versus penetration depth d of a gear plasmonic PV with $D_1 = 508$	
	nm, $D_2 = 556$ nm, $\theta = 31^\circ$, $T = 40$ nm, and $P = 957$ nm	36
3.21	FoM versus periodicity P of a gear plasmonic PV with $D_1 = 508$ nm, D_2	
	= 556 nm, θ = 31°, T = 40 nm, and d = 15 nm	36
3.22	FoM versus iterations.	37
3.23	Si absorption with and without optimum gear nanoparticles array with D_1	
	= 505.6 nm, D_2 = 583.62 nm, θ = 38°, and T = 48.24 nm, d = 14.064 nm,	
	and $P = 878.4 \text{ nm}$	38
3.24	Si absorption with optimum gear nanoparticles array and the	
	corresponding disk nanoparticles array with the same outer diameter,	
	penetration depth, and periodicity	39
3.25	Extinction cross-section of the optimum gear nanoparticles array and	
	the corresponding disk nanoparticles array with the same outer diameter,	
	penetration depth, and periodicity	39
4.1	PIN junction structure	42
4.2	Energy band diagram of P-type, intrinsic, and N-type semiconductor (a)	
	Isolated (b) combined in PIN junction in equilibrium	42
4.3	Electric potential for PIN PV under no illumination	
4.4	Electric Field for PIN PV at equilibrium (a) for 1D model (b) for 2D model.	
4.5	Electric potential for PIN PV under illumination with $G_0 =$	
	$1.4 \times 10^{27} \text{ cm}^{-3} \text{se}c^{-1}$	49
4.6	Electric Field for PIN PV under illumination (a) for 1D model (b) for 2D	
	model with $G_0 = 1.4 \times 10^{27} \text{ cm}^{-3} \text{sec}^{-1}$	50

4.7	(a) Electric potential for PIN PV for dark and under illumination with	
	$G_0 = 1.4 \times 10^{27} \text{ cm}^{-3} \text{se} c^{-1}$ (b)Electric Field for PIN PV for dark and under	
	illumination with $G_0 = 1.4 \times 10^{27} \text{ cm}^{-3} \text{se}c^{-1}$	51
4.8	Comparison between the presented model and nanoHUB results under	
	no-illumination for (a) the potential (b) the electric field. $\ \ldots \ \ldots \ \ldots$	52
4.9	J-V Characteristics for different values of D_1 of gear nanoparticles with	
	D_2 is 556 nm, θ is 31°, and thickness T is 40 nm embedded in the PV	53
4.10	J-V Characteristics for different values of D_2 of gear nanoparticles with	
	D_1 is 508 nm, θ is 31°, and T is 40 nm embedded in the PV	53
4.11	J-V Characteristics for different values of θ of gear nanoparticles with D_1	
	is 508 nm, D_2 is 556 nm, and T is 40 nm embedded in the PV	54
4.12	J-V Characteristics for different values of T of gear nanoparticles with D_1	
	is 508 nm, D_2 is 556 nm, and θ is 31° embedded in the PV	54
4.13	J-V Characteristics for different values of d of gear nanoparticles with	
	D_1 = 508 nm, D_2 =556 nm, θ = 31°, and T = 40 nm embedded in the PV.	55
4.14	J-V Characteristics for different values of P of gear nanoparticles with	
	D_1 = 508 nm, D_2 = 556 nm, θ = 31°, and T = 40 nm embedded in the PV.	56
4.15	J-V curve at optimum dimensions of gear nanoparticle D_1 = 505.6 nm,	
	D_2 = 583.62 nm, θ = 38°, and T = 48.24 nm and optimum position at d =	
	14.064 nm, and $P = 878.4$ nm embedded in PIN-PV	56
A.1	1D Meshing	67
Δ 2	2D Meshing	60

List of Symbols and Abbreviations

a-si Amorphous silicon.

AlGaAs Aluminum Galium Arsenide.

c-si Crystalline silicon.

GaN Galium nitride.

InGaAs Indium Galium Arsenide.

InGaP Indium Galium Phosphide.

 ϵ Dielectric constant.

 Γ collision frequency.

 λ Optical wavelength.

 $\mu_{\mathbf{n}}$ Average Electron mobility.

 $\mu_{\mathbf{p}}$ Average Hole mobility .

 $\omega_{\mathbf{p}}$ plasma frequency of the free electron gas.

 ω Angular frequency.

 $\phi_{\mathbf{n}}$ N-type semiconductor work function.

 $\phi_{\mathbf{p}}$ P-type semiconductor work function.

 Φ Work function.

 ψ Potential.

 ρ Charge density.

 $\tau_{\mathbf{n}}$ Electrons life time.

 $au_{\mathbf{p}}$ Holes lifetime.

c Speed of light.

 $D_{\rm n}$ Electrons diffusion constant.

 $D_{\mathbf{p}}$ Holes diffusion constant.

e, q Electron charge.

 $E_{\mathbf{f}}$ Fermi level.

E Electric field.

G Generation rate.

H Magnetic field.

h Planks constant.

K Boltzmann constant.

m Mass of electrons.

 $N_{\rm a}$ Acceptor doping concentration.

 $N_{\mathbf{d}}$ Donner doping Concentration.

 $n_{\rm i}$ Intrinsic carrier concentration.

N number of electrons per unit volume.

n Electron Concentration.

P_{abs} Absorped Power in Si.

P_L Absorped Power.

p Holes Concentration.

R Shockley Read Hall recombination rate.

 S_{11} Power reflected.

 S_{21} Power transmited.

Solar spectrum irradiace for AM1.5.

Temperature in Kelvin scale.

 θ Gear arm angle.

 D_1 Inner diameter.

 D_2 Outer diameter.

d Nanoparticle depth from Si surface.

P Structure periodicity.

 $S_{\mathbf{g}}$ Global scattering matrix.

 T_{Si} Silicon thickness.

AD anno Domini.

NanoHUB In-browser simulation tools geared toward nanotechnology,

electrical engineering, chemistry, and semiconductor education.

NR Newton- Raphson algorithm.

PV Photovoltaic.

SOI silicon on insulator.

THz Terahertz.

TW terawatts.