BIO-CONTROL OF SOME PATHOGENS INFECTING DATE PALM USING VIRUSES

By

LOAY LEWAA EL-HAMD ABD-ALLAH

B.Sc. Agric. Sc. (Microbiology), Ain Shams University, 2008. M.Sc. Agric. Sc. (Microbiology) Ain Shams University, 2013.

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Agricultural Viruses)

Department of Agric. Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

BIO-CONTROL OF SOME PATHOGENS INFECTING DATE PALM USING VIRUSES

By

LOAY LEWAA EL-HAMD ABD-ALLAH

B.Sc. Agric. Sc. (Microbiology), Ain Shams University, 2008. M.Sc. Agric. Sc. (Microbiology) Ain Shams University, 2013.

This thesis for Ph.D. degree has been approved by:

Dr. Adel Mahmoud Mahmmoud Hammad	••••••
Prof. of Agricultural Virology, Faculty of Agricu	lture, El-Menia
University	
Dr. Fawzy Morsy Abo El- Abbas	•••••
Prof. of Agricultural Virology, Department of Mic	crobiology, Faculty
of Agriculture, Ain Shams University.	
Dr. Badawi Abd El-Salam Othman	••••••
Prof. Emeritus of Agricultural Virology, Departm	ent of Microbiology
Faculty of Agriculture, Ain Shams University.	
Dr. Khaled A. El Dougdoug	•••••
Prof. Emeritus of Agricultural Virology, Departm	ent of Microbiology
Faculty of Agriculture, Ain Shams University	

Date of Examination: 31/12 /2017

BIO-CONTROL OF SOME PATHOGENS INFECTING DATE PALM USING VIRUSES

By

LOAY LEWAA EL-HAMD ABD-ALLAH

B.Sc. Agric. Sc. (Microbiology), Ain Shams University, 2008. M.Sc. Agric. Sc. (Microbiology) Ain Shams University, 2013.

Under the supervision of

Dr. Khaled A. El Dougdoug

Prof. Emeritus of Agricultural Virology, Department of Microbiology, Faculty of Agriculture, Ain Shams University (principal supervisor).

Dr. Badawi Abd El-Salam Othman

Prof. Emeritus of Agricultural Virology, Department of Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Abd El-Rahman Metwaly

Senior Researcher of Date Palm Disease, Date Palm Pathology Dept., Central Laboratory for Research and Development of Date Palm, Agricultural Research Center.

ABSTRACT

Loay Lewaa El-Hamd Abd-allah: Bio-control of some pathogens infecting date palm using viruses. Unpublished Ph. D. Thesis, Department of Microbiology, Faculty of Agriculture, Ain Shams University, 2018.

Pink rot inflorescence disease in date palm (*Phoenix dactylifera* L.) is considered important disease in date palm. The causal agent was isolated from trunk using specific media. The causal agent was identified as *Serratia marcescens* using 16s rRNA gene sequencing and was recorded in GenBank. *B. subtilis* bacterium is considered pathogenic bacteria in date palm in tissue culture stage that obtained from ARC.

Three different specific lytic phages of *S. marcescens* were isolated from soil and trunk of the diseased date palm tree using single plaque isolation technique and named SP1, SP2 and SS1 and 3 phages for *B. subtilis* were isolated from soil and named BS1, BS2 and BS3.

The morphological characters revealed that the isolated bacteriophages for S. marcescens and B. subtilis are belonging to Myoviridae family and Siphoviridae family. Thermal inactivation points (TIP) of phages were 54±1, 78±1, 52±1, 58±1, 46±1 and 54±1°C and pH range were 7-9, 6-9, 5-9, 6-8, 6-9 and 5-8 for phages SP1, SP2, SS1, BS1, BS2 and BS3 respectively. Freezing and thawing of phages showed that phages still active for 3, 3, 2, 4, 2 freezing and thawing times and UV irradiation for 25, 20, 25, 20, 15 and 20 min for SP1, SP2, SS1, BS1, BS2 and BS3 respectively. Longevity In Vitro (LIV) of all phages appeared active more than 90 days. Host range for serratia phages infect S. marcescens A, B and C with SP1 and SP2 while SP1 and SS1 infected S. marcescens D. All B. subtilis phages couldn't infect any identified

bacteria. Bradford showed the total protein of phages that 0.29, 0.35, 0.28, 0.23, 0.14 and 0.28 mg/ml for SP1, SP2, SS1, BS1, BS2 and BS3 respectively. SDS-PAGE showed molecular weight of protein of SP1 was ~66, 35 and 29 KDa. SP2 was~ 38, 35, 30 and 29 KDa. SS1 was ~97, 38, 35, 30 and 29 KDa. BS1 was ~97, 70, 37 and 35KDa. BS2 was ~120, 97, 70, 35 and 25 KDa. BS3 was ~97, 70, 35 and 27 KDa. DNA concentration was was 10.13, 9.76, 11.48, 12.14, 10.75 and 7.26 μg/ml. RAPD-PCR showed SP1 amplified to 4 fragments with 2000, 1500, 1000 and 600 bp, phage SP2 amplified to 4 fragments with 1500, 1000, 700 and 600 bp, SS1 phage amplified to 5 fragments with 1500, 1000, 800, 700 and 600 bp. BS1 amplified to 3 fragments with 1000, 600 and 500 bp, phage BS2 amplified to 2 fragments with 1000 and 600 bp, BS3 phage amplified to 2 fragments with 1000 and 500 bp

Five formulas were used to protect phages from UV irradiation the best used formulas were Beet-root juice and Carrot juice for all *S.marcescens* phages and Beet-root juice, Carrot juice and Casein formulas for all *B.subtilis* phages.

As phage therapy, Phages were used for preservation and prevention *In vivo* and *In vitro* after 0, 30 and 60min. Results showed that using of phages for prevention better than the preservation.

Total phenolic compounds and indols decreased in preservation comparing with control while the level of activity of PPO enzyme increased in preservation comparing with control.

Key words: date palm, *Phoenix dactylifera*, Bacteriophage, Phage, *Serratia marcescens*, *Bacillus subtilis*, pink rot inflorescence, tissue culture formula, phage therapy, phenols.

ACKNOWLEDGEMENT

First of all, I would like to thank **Allah** for helping me along my life and all his grafts who has given.

Sincere gratitude is accorded to **Dr. Khaled A. El Dougdoug** Prof. of virology, Microbiology Department, Faculty of Agriculture, Ain Shams University, for his supervision, help in statistical analysis of the obtained data, valuable advice, continuous encouragement and her help during this work.

Great acknowledgement goes in particular to the Godfather **Prof. Dr. Badawi Abd-Elsalam Othman**, Prof. of virology, Microbiology Department, Faculty of Agriculture, Ain Shams University; for his supervision, scientific advice and my deepest thanks are also for sincere co-operation in revising this manuscript, in addition to his helpful discussion and providing excellent library facilities at the virology research.

Great thanks to **Dr. Abd El-Rahman Metwaly**, Senior Researcher of Date Palm Disease, Date Palm Pathology Dept., Central Lab. for Res. and Development of Date Palm, A.R.C. for the continuous help and his interest throughout the work of the Thesis.

Many thanks to all members and colleagues in Central Lab. for Res. and Development of Date Palm, A.R.C. Center and all staff members and colleagues of Microbiology Department, Faculty of Agriculture, Ain Shams University for pleasant teamwork, create a warm, open atmosphere and assisted me in many ways are acknowledged.

Finally, I would like to thank my mother for her support, without her, I would not have got thus far

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	X
ABBREVIATION	XIII
INTRODUCTION	1
REVIEW OF LITRATURE	4
MATERIALS AND METHODS	40
1. Source of bacteria	40
1.1. Isolation of pathogenic bacterial agent	40
1.2. Pollen grains viability assay	41
1.3. Pathogenicity test	42
1.3.1. Re-isolation	42
2. Methods of pathogenic bacteria inoculation	42
2.1. Preparation of pathogenic bacterial suspension	42
2.1.1. Inoculation of bacterial suspension in plant	43
a- Injection by Syringe	43
b- Pricking by needle	43
c- Cutting by blade	43
3. Identification of the pathogenic bacteria	44
3.1. Traditional method	44
3.1.1. Morphological of bacterial cells	44
3.1.2. Morphology examination by electron microscope	44
3.2. Biochemical tests	45
3.2.1. Stain production	45
3.2.2. Growth on different temperatures	45
3.2.3. Growth on different concentration of NaCl	45
3.2.4. Citrate utilization test	45

3.2.5. Lactose utilization test	46
3.2.6. Sucrose utilization test	46
3.2.7. D-Glucose utilization test	46
3.2.8. Glycerol utilization test	46
3.3. Molecular method for identification of the bacterial pathogen.	4
3.3.1. DNA extraction	4′
3.3.2. PCR program	4′
3.3.3. Prepare cycle sequencing reactions	48
3.3.4. Preparation of samples and performance of electrophoresis	49
3.4. Antibiotic sensitivity	49
4. Source of bacteriophages	5
4.1. Detection of temperate phages	5
4.2. Virulent phages	5
4.2.1. Isolation of virulent phages from free soil	5
4.2.2. Isolation of virulent phages from diseased plant	5
4.3. Bacteriophage assay	5
4.3.1. Qualitative assay	5
4.3.2. Quantitative assay	5
4.4. Purification of lytic phage isolates	5
4.5. Propagation, purification and concentration of bacteriophages	5
5. Characterization of the isolated bacteriophages	5
5.1. Size and morphology of phage particles	5
5.2. UV spectrophotometric properties of the purified phages	5
5.3. Thermal inactivation point (TIP)	5
5.4. Stability of the phages to pH values	5
5.5. Effect of freezing and thawing on bacteriophage activity	5
5.6. Molecular variability among phage isolates	5
5.6.1. Extraction of total nucleic acid	5

5.6.2. RAPD PCR	55
5.6.3. DNA amplification cycles	56
5.6.4. Gel electrophoresis	56
5.7. Protein assay	57
5.7.1. Electrophoretic separation of proteins	57
5.7.1.a. Preparation SDS-Polyacrylamide Gel	57
5.7.1.b. Preparation of the phage's proteins	57
5.7.1.c. Protein electrophoresis	58
5.7.2. Determination of the phage protein colorimetrically	59
5.7.2.a. Preparation of protein standard curve	59
5.7.2.b Quantitation of protein samples	59
5.8. UV radiation stability	59
5.9. Host range	60
5.10. Longevity <i>In vitro</i> (LIV)	61
6. Application of the Phages as a therapeutic agent	61
6.1. Protection of bacteriophages	61
6.1.1. Preparation of formulas	61
6.1.1.a. Protections of phages	61
6.1.2. Aging of formulated phages	62
7. Phage as therapeutic agent	62
7.1. Preparation of plants	62
7.2. Preparation of pathogenic bacterial inoculum	63
7.3. Preparation of phages inoculum	63
7.4. Prevention	63
7.5. Preservation	64
7.6. Antibiotic therapy	65
7.8. Detection bacteria and the phages	66
8. Determination of the biochemical changes in treated plants	66
8.1. Determination of total phenol contents	66
8.2. Determination of total Indols	67

8.3. Determination of poly-phenol oxidase (PPO)	67
Solutions and buffer	68
RESULTS	74
DISCUSSION	150
SUMMARY	159
REFERENCES	164
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Page
1-program of DNA amplification in PCR	48
2-program of DNA amplification in preparation of sequencing	49
3- Program of PCR	56
4- Preparation of separating and stacking gel of SDS-PAGE	58
5- Bacterial host-range for the isolated phages	60
6- Number of death plants with different inoculation methods	78
7- Results of the physiological tests of the isolated pathogenic bacterium	81
8-16s rRNA gene sequence for <i>S.marcescens</i> isolates collected from GenBank	85
9- Sensitivity of bacteria to ampicillin	86
10- Morphology of isolated plaques	88
11- Morphology and taxonomy of the isolated phages	90
12- UV absorbance for Serratia marcescens the phages	91
13- Phage stability for TIP range	92
14- Effect of pH values on S.marcescens phages	93
15- Effect of freezing and thawing cycling on <i>S.marcescens</i> lytic phages' activity	95
16- DNA concentration of Serratia lytic phages	97
17- Genetic polymorphism among Serratia phages	98
18- Protein polymorphism among <i>S.marcescens</i> phages	101
19- Effect of UV on Serratia phages activity	103
20- Bacterial host range for the isolated phages	105
21- Morphology and taxonomy of the isolated plaques.	106
22- UV absorbance for the <i>Bacillus subtilis</i> phages	107
23- Phage Stability for TIP range	108
24- Effect of acidity and alkalinity on B. subtilis lytic	109

phages stability	
25-Effect of freezing and thawing times on <i>B. subtilis</i> lytic	110
phages activity	112
26- DNA concentration of Bacillus lytic phages	113
27- Genetic polymorphism among Bacillus phages	115
28- Protein polymorphism among <i>B. subtilis</i> phages	117
29- Effect of UV irradiation on Bacillus phages	119
30- Effect of some formulas on protection of Serratia	130
phages' activity against UV radiation	130
31- Effect of some formulas on protection of Bacillus	131
phages' activity against UV radiation	131
32- Number of dead plants treated with S.marcescens In	133
vivo	133
33- Number of dead plants treated with S.marcescens In	134
vitro	
34- Number of dead of treated plants with B.subtilis In	135
vitro	
35- Detection of S.marcescens and its phages in In vivo treatment	137
36- Detection of S.marcescens and its phages in In vitro	
treatment	139
37- Detection of B.subtilis and its phages in In vitro	1.40
treatment	140
38- Biochemical changes In vivo with S.marcescens	147
39- Biochemical changes In vitro with S.marcescens	148
40-Biochemical changes In vitro with B.subtilis	149

LIST OF FIGURES

Fig. No.	Page
1-Symptoms appeared on bacterial diseased date palm	41
2- Growth of the isolated bacterial pathogen disease on different media	74
3- Viability of pollen grain of date palm male flowers using acetocarmine stain	75
4- The pathogenicity test on date palm flower stalks with the isolated bacteria.	76
5- Pathogenicity test experiment using tissue culture	76
6-pathogenicity test experiment by the isolated bacteria	77
7- Light micrograph of the Gram stained pathogenic bacterial isolate	79
8- Electron micrograph of isolated bacterium using TEM	79
9-Electropherogram Data of forward of nucleotide sequence of isolated bacteria	83
10- Forward of nucleotide sequence of isolated bacteria	83
11- Electropherogram Data of reverse of nucleotide sequence of isolated bacteria	84
12- Reverse of nucleotide sequence of isolated bacteria	84
13- Phylogenetic tree for 16s rRNA of the isolated pathogenic bacteria	85
14- Bacterial lawns of <i>S.marcescens</i> and <i>B.subtilis</i> spotted with drops of phage lysates	87
15- Morphology of plaques of <i>S.marcescens</i> phages from single plaque isolation	88
16- Single plaque of <i>B. subtilis</i> phages	89
17- Electron micrographs of negatively stained particles of phages SP1, SP2 and SS1 specific for <i>S. marcescens</i>	90
18- U.V spectrum of purified suspension of Serratia phages	91

Fig. No.	Page
19- Effect of pH values on <i>S.marcescens</i> phages	94
20- Effect of freezing and thawing cycling on <i>S.marcescens</i> lytic phage's activity	96
21- RAPD-PCR for Serratia phages` DNA	98
22-Quantitation of Serratia protein using Bradford method	99
23-Stability of Serratia phages for UV irradiation	104
24- Electron micrographs of negatively stained particles of phages BS1, BS2 and BS3 specific to <i>B. subtilis</i>	106
25-U.V spectrum of purified suspension of Bacillus phages	107
26- Effect of pH values on <i>B. subtilis</i> lytic phages stability	110
27- Effect of freezing and thawing cycles on Bacillus phages	113
28- Electrophoresis of extracted DNA of Serratia and Bacillus phages on 1% agarose gel	114
29- RAPD-PCR for Bacillus phages` DNA	115
30- Quantitation of Bacillus protein using Bradford method	116
31- SDS-PAGE 12% of purified serratia and bacillus phages	118
32- Stability of Bacillus phages for UV irradiation	120
33- UV stability with treated SP1 phage with different formulas	122
34- Mutation of plaque SP1 treated phage with sodium alginate	123
35- UV stability with treated SP2 phage with different formulas	124
36- SP2 phage mutant plaque of 2mm in diameter treated with sodium alginate	124