HERB AND ESSENTIAL OIL PRODUCTION OF THREE Ocimum SPECIES AS AFFECTED BY CHICKEN MANURE AND HUMIC ACID TREATMENTS

By

RASHA AHMED MOHAMED EL-ZIAT

B.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., 2006 M.Sc. (Ornamental Horticulture), Fac. Agric., Cairo Univ., Egypt, 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Ornamental Horticulture)

Department of Ornamental Horticulture Faculty of Agriculture Cairo University EGYPT

2015

APPROVAL SHEET

HERB AND ESSENTIAL OIL PRODUCTION OF THREE Ocimum SPECIES AS AFFECTED BY CHICKEN MANURE AND HUMIC ACID TREATMENTS

Ph.D. Thesis In Agric. Sci. (Ornamental Horticulture)

By

RASHA AHMED MOHAMED EL-ZIAT

B.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., 2006 M.Sc. (Ornamental Horticulture), Fac. Agric., Cairo Univ., Egypt, 2011

APPROVAL COMMITTEE

Dr. HEND EL-SAYED WAHBA
Researcher professor of Medicinal and Aromatic Plants, National
Research Center, Dokki, Giza
Dr. AHMED SALAMA EL-LEITHY
Professor of Ornamental Horticulture, Fac. Agric., Cairo University
Dr. SAFIA HAMDY EL-HANAFY
Professor of Ornamental Horticulture, Fac. Agric., Cairo University
Dr. ABD EL- GHAFOUR AWAD EL-SAYED
Professor of Medicinal and Aromatic Plants, Fac. Agric., Cairo University

Date: 26 / 5 / 2015

SUPERVISION SHEET

HERB AND ESSENTIAL OIL PRODUCTION OF THREE Ocimum SPECIES AS AFFECTED BY CHICKEN MANURE AND HUMIC ACID TREATMENTS

Ph.D. Thesis In Agric. Sci. (Ornamental Horticulture)

By

RASHA AHMED MOHAMED EL-ZIAT

B.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., 2006 M.Sc. (Ornamental Horticulture), Fac. Agric., Cairo Univ., Egypt, 2011

SUPERVISION COMMITTEE

Dr. ABD EL- GHAFOUR AWAD EL-SAYED Professor of Medicinal and Aromatic Plants, Fac. Agric., Cairo University

Dr. SAFIA HAMDY EL-HANAFY Professor of Ornamental Horticulture, Fac. Agric., Cairo University Name of Candidate: Rasha Ahmed Mohamed El-Ziat Degree: Ph.D.

Title of Thesis: Herb and Essential Oil Production of Three Ocimum Species as

Affected by Chicken Manure and Humic Acid Treatments.

Supervisors: Dr. Abd El Ghafour Awad El-Sayed

Dr. Safia Hamdy El-Hanafy

Department: Ornamental Horticulture **Approval:** 26 / 5 /2015

ABSTRACT

This study carried out at the experimental nursery of the Ornamental Horticulture Department, Faculty of Agriculture, Cairo University, during the successive seasons of 2012 and 2013. The aim of this study was to investigate the effect of chicken manure at rates of 10 and 20 m³/feddan + humic acid at rates of 125 and 250 ppm and their interactions on growth, herb yield, essential oil yield, essential oil constituents, number of glandular hairs and chemical constituents of Ocimum spp. (O. basilicum, O.sanctum and O. citriodorum) plants. The results in both seasons pointed out that the treated plants with chicken manure at 10 m³ (100 g/pot) then sprayed with humic acid at 125 ppm in the second cut of *Ocimum* species significantly increased plant height, number of branches, leaf area, fresh and dry weights, number of glands and essential oil yield per plant and per feddan compared to control plants (untreated) but O. basilicum gave the highest values.GC.MS analysis of the essential oil of all treatments was performed to study the main constituents of the different *Ocimum spp*. Twelve components have been identified in the oil. The major components of the essential oil were linalool, estragole and eugenol followed by α-citral, β-citral, terpinen-4-ol, trans-α-bergamotene, t-cadinol, trans-caryophyllene, germacrene, methyl eugenol, and nerol. The highest values of chemical constituents(total chlorophylls, total carbohydrates, N, P and K) were obtained from plants treated with NPK in the third cut of Ocimum spp. plants followed by the treated plants with chicken manure at 10 m³ (100 g/pot) then sprayed with humic acid at 125 ppm. The lowest nitrate content in both seasons resulted from plants treated with chicken manure at 10 m³/feddan +humic acid at 125 ppm in the first cut of O. basilicum.

Key words: *Ocimum spp.*, chicken manure, humic acid, vegetative growth, herb yield, essential oil, Linalool, Estragole, chemical constituents, galndular hairs.

DEDICATION

I dedicate this work to my father, my Mother, my sisters and brothers for all the support they lovely offered during my post graduate studies.

Special dedication to my husband (Ahmed Fawzy) and my son (Abd Allah).

ACKNOWLEDGMENT

First of all, full praise and gratitude is due to Allah. I wish to express my hearty appreciation and sincere gratitude to **DR**, **Abdel Ghafour Awad**, Professor of Medicinal and Aromatic Plants, Faculty of Agriculture, Cairo University, for his supervision, indispensable advice, valuable comments and constructive criticism during the performance of this investigation.

I wish to express my indebtedness and profound gratitude to **DR**, **SAFIA HAMDY MAHMOUD**, Professor of Ornamental Horticulture, Fac. Agric., Cairo University, for suggesting the subject of this work, kind supervision, long lasting beneficial instructions and continuous guidance during the course of this work.

I wish to express **Dr. Saber Hendawy** Professor of Medicinal and Aromatic Plants, National Research Center, Dokki, Giza, Egypt for his supply seeds of plant materials.

Deep and great thanks are due to all **my professors** of Medicinal and Aromatic Plants, Faculty of Agriculture, Cairo University, for their constructive encouragement and advices throughout the course of the study.

INTRODUCTION	
REVIEW OF LITERATURE	
1. Vegetative growth	• • • • •
2. Fresh and dry yield	
3. Essential oil production	
4. Oil glandular hairs	
5. Chemical constituents MATERIALS AND METHODS	
RESULTS AND DISCUSSION	
1. Vegetative growth and herb yield	
a. Plant height	
b. Number of branches / plant	
c. Leaf area	
d. Herb fresh weight	
e. Herb oven dry weight	
f. Herb air dry weight	
g. leaf /stem ratio	
2. Essential oil production	• • • •
a. Number of glandular hairs	
b. Essential oil % in fresh herb	
c. Essential oil yield	
d. Essential oil components by GC-MS	
3. Chemical constituents	
a. Total chlorophylls (SPAD)	
b. Total carbohydrates	
c. Nitrogen	
d. Phosphorus	
e. Potassium	
f. Nitrates	
SUMMARY	
RECOMMENDATIONS	
REFERENCES	
ARABIC SUMMARY	

CONTENTS

Page

LIST OF TABLES

No.	Title	Page
1.	Physical and chemical characteristics of clay soil used for growing <i>Ocimum</i> plants in 2012 and 2013 seasons	24
2.	Chemical analysis of chicken manure during 2012 and 2013 seasons	24
3.	Effect of chicken manure, humic acid and their interactions on plant height (cm) of <i>Ocimum spp</i> . in the first season, 2012	33
4.	Effect of chicken manure, humic acid and their interactions on plant height (cm) of <i>Ocimum spp</i> . in the second season, 2013	34
5.	Effect of chicken manure, humic acid and their interactions on the number of branches per plant of <i>Ocimum spp</i> . in the first season, 2012	37
6.	Effect of chicken manure, humic acid and their interactions on the number of branches per plant of <i>Ocimum spp</i> . in the second season, 2013	38
7.	Effect of chicken manure, humic acid and their interactions on leaf area (cm ²) of <i>Ocimum spp</i> . in the first season, 2012	40
8.	Effect of chicken manure, humic acid and their interactions on leaf area (cm ²) of <i>Ocimum spp</i> . in the second season, 2013	41
9.	Effect of chicken manure, humic acid and their interactions on herb fresh weight (g/plant) of <i>Ocimum spp</i> . in the first season, 2012	44
10.	Effect of chicken manure, humic acid and their interactions on herb fresh weight (g/plant) of <i>Ocimum spp.</i> in the second season, 2013	45
11.	Effect of chicken manure, humic acid and their interactions on herb fresh weight (ton/feddan) of <i>Ocimum spp</i> . in the first season, 2012	
	11151 5045011, 2012	46

12.	Effect of chicken manure, humic acid and their interactions on herb fresh weight (ton/feddan) of <i>Ocimum spp</i> . in the second season, 2013	4
13.	Effect of chicken manure, humic acid and their interactions on oven at 40-45°C dry weight (g/plant) of <i>Ocimum spp</i> . in the first season, 2012	5
14.	Effect of chicken manure, humic acid and their interactions on oven at 40-45°C dry weight (g/plant) of <i>Ocimum spp</i> . in the second season, 2013	5
15.	Effect of chicken manure, humic acid and their interactions on oven at 40-45°C dry weight (ton/feddan) of <i>Ocimum spp</i> . in the first season, 2012	5
16.	Effect of chicken manure, humic acid and their interactions on oven at 40-45°C dry weight (ton/feddan) of <i>Ocimum spp</i> . in the second season, 2013	5
17.	Effect of chicken manure, humic acid and their interactions on herb air dry weight (g/plant) of <i>Ocimum spp</i> . in the first season, 2012	5
18.	Effect of chicken manure, humic acid and their interactions on herb air dry weight (g/plant) of <i>Ocimum spp</i> . in the second season,2013	5
19.	Effect of chicken manure, humic acid and their interactions on herb air dry weight (ton/feddan) of <i>Ocimum spp</i> . in the first season,2012	5
20.	Effect of chicken manure, humic acid and their interactions on herb dry weight (ton/feddan) of <i>Ocimum spp.</i> in the second season, 2013	5
21.	Effect of chicken manure, humic acid and their interactions on leaf/stem ratio of <i>Ocimum spp</i> . in the two seasons	6
22.	Effect of chicken manure, humic acid and their interactions on the number of glands per unit surface area(0.04 cm ²) of leaf and per leaf in <i>Ocimum spp</i> . in the second cut of the first season, 2012	6

23.	Effect of chicken manure, humic acid and their interactions on oil percentage of <i>Ocimum spp</i> . in the first season, 2012	78
24.	Effect of chicken manure, humic acid and their interactions on oil percentage of <i>Ocimum spp</i> . in the second season, 2013	79
25.	Effect of chicken manure, humic acid and their interactions on essential oil yield (ml/plant) of <i>Ocimum spp</i> . in the first season, 2012	81
26.	Effect of chicken manure, humic acid and their interactions on essential oil yield (ml/plant) of <i>Ocimum spp</i> . in the second season, 2013	82
27.	Effect of chicken manure, humic acid and their interactions on essential oil yield (l/feddan) of <i>Ocimum spp</i> . in the first season, 2012	83
28.	Effect of chicken manure, humic acid and their interactions on essential oil yield (l/feddan) of <i>Ocimum spp.</i> in the second season, 2013	84
29.	Effect of chicken manure, humic acid and their interactions on the essential oil components (%) by GC-MS of <i>Ocimum spp</i> . in the first season, 2012	87
30.	Effect of chicken manure, humic acid and their interactions on total chlorophylls of <i>Ocimum spp</i> . in the two seasons	115
31.	Effect of chicken manure, humic acid and their interactions on total carbohydrates of <i>Ocimum spp</i> . in the two seasons.	117
32.	Effect of chicken manure, humic acid and their interactions on nitrogen content of <i>Ocimum spp</i> . in the two seasons	120
33.	Effect of chicken manure, humic acid and their interactions on phosphorus content of <i>Ocimum spp.</i> in the two seasons	122
34.	Effect of chicken manure, humic acid and their interactions on potassium content of <i>Ocimum spp.</i> in the two seasons	125
35.	Effect of chicken manure, humic acid and their interactionson nitrate of <i>Ocimum spp</i> . in the two seasons	127

LIST OF FIGURES

No.	Title	Page
1	Scanning electron microscope (SEM) micrographs of the glandular hairs on the upper epidermis of mature leaf of <i>O. basilicum</i> control plants in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hair	64
2	Scanning electron microscope (SEM) micrographs of the glandular hairs on the lower epidermis of mature leaf of <i>O. basilicum</i> control plants in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hair	65
3	Scanning electron microscope (SEM) micrographs of the glandular hairs on the upper epidermis of mature leaf of <i>O. basilicum</i> plants as affected by chicken manure and humic acid treatments in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hair	66
4	Scanning electron microscope (SEM) micrographs of the glandular hairs on the lower epidermis of mature leaf of <i>O. basilicum</i> plants as affected by chicken manure and humic acid treatments in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hair	67
5	Scanning electron microscope (SEM) micrographs of the glandular hairs on the upper epidermis of mature leaf of <i>O. sanctum</i> control plants in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hairs	68
6	Scanning electron microscope (SEM) micrographs of the glandular hairs on the lower epidermis of mature leaf of <i>O. sanctum</i> control plants in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hairs	69
7	Scanning electron microscope (SEM) micrographs of the glandular hairs on the upper epidermis of mature leaf of <i>O. sanctum</i> plants as affected by chicken manure and humic acid treatments in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hair	70
8	Scanning electron microscope (SEM) micrographs of the glandular hairs on the lower epidermis of mature leaf of <i>O. sanctum</i> plants as affected by chicken manure and humic acid	, 0

	treatments in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hair	71
9	Scanning electron microscope (SEM) micrographs of the glandular hairs on the upper epidermis of mature leaf of <i>O. citriodorum</i> control plants in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hairs	72
10	Scanning electron microscope (SEM) micrographs of the glandular hairs on the lower epidermis of mature leaf of <i>O. citriodorum</i> control plants in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm2). B) Glandular hair	73
11	Scanning electron microscope (SEM) micrographs of the glandular hairs on the upper epidermis of mature leaf of <i>O. citriodorum</i> plants as affected by chicken manure and humic acid treatments in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hair	74
12	Scanning electron microscope (SEM) micrographs of the glandular hairs on the lower epidermis of mature leaf of <i>O. citriodorum</i> plants as affected by chicken manure and humic acid treatments in the second cut of the first season, 2012. A) Total glandular hairs (0.04 cm ²). B) Glandular hair	75
13	GC-MS chromatogram of <i>Ocimum basilicum</i> essential oil distilled from control plants in the second cut of the first season, 2012	90
14	GC-MS chromatogram of <i>Ocimum basilicum</i> essential oil distilled from plants treated with NPK in the second cut of the first season, 2012	91
15	GC-MS chromatogram of <i>Ocimum basilicum</i> essential oil distilled from plants treated with chicken manure at 10 m ³ /feddan (100 g/pot) in the second cut of the first season, 2012	92
16	GC-MS chromatogram of <i>Ocimum basilicum</i> essential oil distilled from plants treated with chicken manure at 20 m ³ /feddan (200 g/pot) in the second cut of the first season, 2012	93
17	GC-MS chromatogram of <i>Ocimum basilicum</i> essential oil distilled from plants treated with humic acit at 125 ppm in the second cut of the first season, 2012	93
		<i></i>

18	GC-MS chromatogram of <i>Ocimum basilicum</i> essential oil distilled from plants treated with humic acid at 250 ppm in the second cut of the first season, 2012	95
19	GC-MS chromatogram of <i>Ocimum basilicum</i> essential oil distilled from plants treated with chicken manure at 10 m ³ /feddan (100 g/pot) + humic acid at 125 ppm in the second cut of the first season, 2012	96
20	GC-MS chromatogram of <i>Ocimum sanctum</i> essential oil distilled from control plants in the second cut of the first season, 2012	97
21	GC-MS chromatogram of <i>Ocimum sanctum</i> essential oil distilled from plants treated with NPK in the second cut of the first season, 2012	98
22	GC-MS chromatogram of <i>Ocimum sanctum</i> essential oil distilled from plants treated with chicken manure at 10 m ³ /feddan (100 g/pot) in the second cut of in the first season, 2012	99
23	GC-MS chromatogram of <i>Ocimum sanctum</i> essential oil distilled from plants treated with chicken manure at 20 m ³ /feddan (200 g/pot) in the second cut of the first season, 2012.	100
24	GC-MS chromatogram of <i>Ocimum sanctum</i> essential oil distilled from plants treated with humic acit at 125 ppm in the second cut of the first season, 2012	101
25	GC-MS chromatogram of <i>Ocimum sanctum</i> essential oil distilled from plants treated with humic acid at 250 ppm in the second cut of the first season, 2012	101
26	GC-MS chromatogram of <i>Ocimum sanctum</i> essential oil distilled from plants treated with chicken manure at 10 m ³ /feddan (100 g/pot) + humic acid at 125 ppm in the second cut of the first season, 2012	103
27	GC-MS chromatogram of <i>Ocimum citriodorum</i> essential oil distilled from control plants in the first season, 2012	104
28	GC-MS chromatogram of <i>Ocimum citriodorum</i> essential oil distilled from plants treated with NPK in the second cut of the first season, 2012	105

29	GC-MS chromatogram of <i>Ocimum citriodorum</i> essential oil distilled from plants treated with chicken manure at 10 m ³ /feddan (100 g/pot) in the second cut of the first season, 2012	106
30	GC-MS chromatogram of <i>Ocimum citriodorum</i> essential oil distilled from plants treated with chicken manure at 20 m ³ /feddan (200 g/pot) in the second cut of the first season, 2012	107
31	GC-MS chromatogram of <i>Ocimum citriodorum</i> essential oil distilled from plants treated with humic acit at 125 ppm in the second cut of the first season, 2012	108
32	GC-MS chromatogram of <i>Ocimum citriodorum</i> essential oil distilled from plants treated with humic acid at 250 ppm in the second cut of the first season, 2012	109
33	GC-MS chromatogram of <i>Ocimum citriodorum</i> essential oil distilled from plants treated with chicken manure at 10 m ³ /feddan (100 g/pot) + humic acid at 125 ppm in the second cut of the first season, 2012	110

INTRODUCTION

Ocimum species are annual and perennial herbs and shrubs, mostly native to the tropical and warm temperate regions. They are members of the Lamiaceae family and are cultivated worldwide under a variety of ecological conditions. The genus *Ocimum* consists of 50–150 species with a large number of varieties (Runyoro et al., 2010). Among the species of the genus, *Ocimum basilicum* L. (sweet basil) is the major essential oil crop around the world and is cultivated in many countries. Basil has been used as a medicinal and aromatic plant for centuries their pharmaceutical and medical properties, basil species are used in the treatment of headaches, cough, diarrhoea, antihelminthic treatments, and in kidney dysfunctions. The leaves can be used fresh and dried, as edibles or spices (Labra et al., 2004). Essential oils extracted from both fresh and dried materials are frequently used as a flavour additives in food, pharmaceutical and cosmetics. *Ocimum* plants are sometimes used against pest insects.

There are many varieties of *Ocimum basilicum*, as well as several related species or hybrids species also called basil. The type used in Italian food is typically called sweet basil, as opposed to that basil (*O. basilicum* var. *thyrsiflora*), lemon basil (*O. citriodorum*) and holy basil (*Ocimum tenuiflorum*), which are used in Asia. While most common varieties of basil are treated as annuals, some are perennials in warm, tropical climates, including holy basil and a cultivar known as 'African Blue'. (Paton, 1992).