

Exact and Computational Methods for Solving some Integral and Differential Equations

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Master

Degree in Teacher Preparation in Science

(Pure Mathematics)

Submitted to

Department of Mathematics, Faculty of Education, Ain Shams University

By

Yara Mostafa Sayed Mohamed

Supervised by

Prof. Dr. Ahmed Younis Ghaly

Professor of applied Mathematics, Department of Mathematics, Faculty of Education, Ain shams University.

Prof. Dr. Hassan Ahmed Zedan

Professor of Pure Mathematics, Department of Mathematics, Faculty of Science, Kafr El-Sheikh University.

Dr. Seham Shapll Tantawy

Lecturer of Pure Mathematics, Department of Mathematics, Faculty of Education, Ain shams University.

(2015)

Candidate: Yara Mostafa Sayed Mohamed

<u>Thesis Title</u>: Exact and Computational Methods for solving some Integral and Differential Equations.

Degree: Master for Teacher's Preparation in Science

(Pure Mathematics)

Supervisors:

(1) Prof. Dr. Ahmed Younis Ghaly

Professor of applied Mathematics, Department of Mathematics, Faculty of Education, Ain shams University.

(2) Prof. Dr. Hassan Ahmed Zedan

Professor of Pure Mathematics, Department of Mathematics, Faculty of Science, Kafr El-Sheikh University.

(3) Dr. Seham Shapll Tantawy

Lecturer of Pure Mathematics, Department of Mathematics, Faculty of Education, Ain shams University.

بسُم اللهِ الرّحمنِ الرّحيمِ

اللَّ اللَّهُ الْكُلُّهُ لا عِلْمُ لَنَا إِلَّا مَا عَلَّمْتُنَا إِنَّكَ أَنْ الْعَلِيمُ الْكُلِّمُ الْكُلِّم

سورة البقرة - الآية (32)

الإهداء

إن الحمد لله نحمده ونستعينه ونستغفره ونستهديه، ونصلي ونسلم على المبعوث رحمة للعالمين سيدنا محمد بن عبد الله عليه أفضل الصلاة والسلام. تعتبر الرسالة الإلهية لرسول الله محمد (صلي الله عليه وسلم) تحريرًا للعقول من الخرافات ودعوة للتأمل واكتشاف أسرار الكون " سَنُريهِمْ آيَاتِنَا فِي الْآفَاقِ وَفِي أَنْفُسِهِمْ حَتَّىٰ يَتَبَيَّنَ لَهُمْ أَنَّهُ الْحَقُّ أَوَلَمْ يَكُفِ بِرَبِّكَ أَنَّهُ عَلَىٰ كُلِّ شَيْءٍ شَهِيد". [في الآفَاقِ وَفِي أَنْفُسِهِمْ حَتَّىٰ يَتَبَيَّنَ لَهُمْ أَنَّهُ الْحَقُّ أَولَمْ يَكُفِ بِرَبِّكَ أَنَّهُ عَلَىٰ كُلِّ شَيْءٍ شَهِيد". [فصلت:53] وهناك العديد من النصوص التي تحث على العلم وطلبه، لذا فإني أسأل الله أن يعلمنا ما ينفعنا وأن ينفع بهذا العمل.

يقول العالم (الفيلسوف) جاليليو:

(إن الرياضيات هي اللغة التي أذا فهمناها لأصبح في استطاعتنا فهم أسرار الكون).

وبهذه المناسبة يسعدني أن أهدي هذه الرساله التي أسأل الله أن يتقبلها وينفع بها إلى:

- مدرستي الأولى التي علمتني العطاء بلا مقابل، وغمرتني بالحنان والحب الخالصين، وتحملت صعاب الحياة عن طيب نفس، بارك الله في عمرك يا أمي وألبسك ثياب الصحة والعافية، وأحسن خاتمتك، ورزقك الفردوس الأعلى.
- من علمني الصمود مهما تبدلت الظروف إلى أبي رحمه الله الذي لو لا تشجيعه وتحفيزه ما اكتمل هذا العمل جعله الله في ميزان حسناته ورزقه الفردوس الأعلى.
- من شملوني بالعطف، وأمدوني بالعون، وحفزوني للتقدم، وحبهم يجري في عروقي، إخوتي وأخواتي رعاهم الله.
 - أســـاتذتي الكرام، نجوم الهدى في ليل الظلام، من كلّت أناملهم ليمهدوا لي الطريق إلى الأمام، فلهم منى جزيل الشكر والتقدير والاحترام.
 - زملائي الأوفياء، من تجسدت فيهم معاني الحب والوفاء والصدق والعطاء.
 - وأخيرًا أدعو الله- سبحانه وتعالى- أن يتقبل هذا الجهد وأن يجعله زخرًا لي يوم القيامة وأن ينفع به المسلمين.

شكر وتقدير

بداية أشكر من تفضل وتكرم، وأعطى وأنعم، ووفق ويسر، خالقي ورازقي وولي نعمتي ربي ورب كل شيء.

فالحمد لله الذي بنعمته تتم الصالحات، فلقد وفقني الله سبحانه بفضله وجوده ومنه وكرمه في إنجاز هذه الرساله. فالحمد لله على الدوام وله الشكر على التمام، فهو: "الرَّحْمَنُ عَلَّمَ القُرْآنَ خَلَقَ الإِنسَانَ عَلَّمَهُ البَيَانَ " الرحمن (1-4).

والصلاة والسلام على سيد الأنام، وحبيب الرحمن سيدنا محمد - صلى الله عليه وسلم- من حثنا على طلب العلم، فهو معلم البشرية فصلاة وسلاما عليه ننال بهما في الدنيا عزة وكرامة، وفي الآخرة صحبة وشفاعة.

كما لا يسعني إلا أن أتقدم بعميق الشكر والإمتنان لهيئة الإشراف وهم:

الأستاذ الدكتور/ أحمد يونس غالي. أستاذ الرياضيات التطبيقية بكلية التربية - جامعة عين شمس لدعمه المستمر وتشجيعه المتواصل والذي علمني الكثير ليس فقط في الجانب العلمي ولكن أيضًا في جوانب الحياه المختلفة.

الأستاذ الدكتور/ حسن أحمد زيدان. أستاذ الرياضيات البحتة بكلية العلوم – جامعة كفر الشيخ الذي أحاطني بالرعاية والإهتمام من خلال اقتراحه لموضوعات البحث وإرشاده المستمر وصبره وعطائه اللامحدود وتوجيهه القيم، كما زودنى بحكمته والمعلومات العديدة من خلال العديد من المناقشات.

الدكتور/سهام شبل طنطاوى. مدرس الرياضيات البحتة بكلية التربية - جامعة عين شمس لدعمها المستمر من خلال تعليقاتها التى لا تقدر بثمن والنقاط المضيئة التي كانت أعظم مساعد لي أثناء إعداد الأطروحة. ولقد أعطتني الكثير من وقتها الثمين، كما زودتنى بالمعلومات العديدة من خلال العديد من المناقشات.

كما أتقدم بجزيل الشكر إلى قسم الرياضيات- كلية التربية - جامعة عين شمس ممثلا برئيس القسم الأستاذ الدكتور/ حسن عجوة الذي كان لنا خير مشجع، وإلى أساتذتي الكرام لما أحاطوني به من رعاية وإهتمام خلال سنوات الدراسة فلهم جزيل الشكر.

كما أتقدم بالشكر الجزيل إلى أمي وإخوتي وأخواتى الذين صبروا وتحملوا الكثير من أجلي فأنا مدينه لهم بكل شئ.

وأخيرا وليس آخرا، أتقدم بالشكر الجزيل إلى أبى-رحمه الله- لكل الحب والدعم والتشجيع الذى أظهره لى دائمًا.

يارة مصطفى

Abstract

This thesis consists of five chapters distributed as follows:

Chapter I

This chapter is an introduction to the basic concepts of integral equations. It includes the classifications of integral and integro-differential equations. It also includes an introduction to the basic definitions and the necessary properties for fractional calculus such as the definitions of Riemann-Liouville, Caputo and discusses some necessary mathematical definitions that will arise in the study of these concepts.

An introduction to the various methods used in this thesis to obtain the exact solutions and the numerical solutions. It also includes an introduction to some theorems and basic concepts of measure theory which will be used in this thesis.

Chapter II

In this chapter, we improve and extend variational iteration method (VIM) and Chebyshev spectral method to find the exact solutions and the approximate solutions for fractional differential equations, fractional integro-differential equations, nonlinear systems of fractional integro-differential equations and generalized Abel's integral equations of the second kind. Moreover, we aim to study the convergence of the VIM for fractional differential equations, fractional integro-differential equations, nonlinear systems of fractional integro-differential equations and generalized Abel's integral equations of the second kind and to address the sufficient condition for convergence. The results obtained by variational iteration method and Chebyshev spectral method in this chapter are compared with the exact solutions and with the results obtained by some other authors, this comparison shows that we obtained better results and more accurate.

Chapter III

In this chapter, we apply the differential transform method (DTM) and homotopy perturbation method (HPM) to solve fifth-order boundary value problem, system of second-order boundary value problem, system of Volterra integral equations, systems of linear and nonlinear integro-differential, Cauchy problem, boundary value problem of fractional order, fractional integro-differential equations and nonlinear systems of fractional integro-differential equations.

In addition, we extend the modified Laplace decomposition method (mLDM) and the modified Laplace decomposition method with the Padé approximant (mLD-PA) to solve boundary value problem of fractional order and systems of linear and nonlinear fractional integro-differential equations. The results obtained by differential transform method, fractional differential transform method, homotopy perturbation method,

modified homotopy perturbation method, modified Laplace decomposition method and modified Laplace decomposition method with the Padé approximant in this chapter are compared with the exact solutions and with the results obtained by some other authors, this comparison shows that we obtained better results and more accurate.

Chapter IV

In this chapter, we extend and generalize the Haar wavelet method (HWM) and Legendre wavelets method (LWM) to solve systems of Fredholm and Volterra integro-differential equations of the second kind, higher-order boundary value problems, fractional integro-differential equations and systems of Fredholm and Volterra fractional integro-differential equations of the second kind. Study problems are performed to test the applicability, efficiency and accuracy of this method. The results obtained by Haar wavelet method and Legendre wavelets method in this chapter are compared with the exact solutions and with the results obtained by some other authors, this comparison shows that we obtained better results and more accurate.

Chapter V

In this chapter, we consider the kernels of Baskakov--Durrmeyer and the Szász--Mirakjan--Durrmeyer operators. We establish a Bernstein type inequality for these operators and apply the results to the quasi-interpolants. For the Baskakov--Durrmeyer quasi-interpolants, we give a representation as linear combinations of the original Baskakov--Durrmeyer operators and prove an estimate of Jackson--Favard type and a direct theorem in terms of an appropriate K-functional. Also, we present the Szász--Mirakjan--Durrmeyer operator with respect to an arbitrary measure in the one-dimensional case.

ACKNOWLEDGEMENTS

First of all gratitude and thanks to gracious **Allah** who always helps and guides me. I would like to thank **the prophet Mohamed** "peace be upon him" who urges us to seek knowledge and who is the teacher of mankind.

I am grateful to **Prof. Dr. Ahmed Younis Ghaly**, Professor of Applied Mathematics, Department of Mathematics, Faculty of Education, Ain Shams University, for his help and encouragement during the preparation of the thesis. He taught me many things not only on the technical level but also on the practical and personal levels.

Furthermore; I am thankful and grateful to **Prof. Dr. Hassan Ahmed Zedan**, Professor of Pure Mathematics, Department of Mathematics, Faculty of Science, Kafr El-Sheikh University, for suggesting the topics of the thesis, as well as for his valuable instructions, guidance and continuous follow up on this study. He provided me with his wisdom and knowledge through many discussions.

Also special thanks to my supervisor **Dr. Seham Shabll Tantawy**, lecturer of Mathematics, Department of Mathematics, Faculty of Education, Ain Shams University, for her invaluable comments and illuminating points which were of greatest help to me while preparing the thesis. She offered me much of her precious time and provided me with her knowledge through many discussions.

Thanks also are due to **Prof. Dr. Hassan Agwa**, Head of Mathematics Department, Faculty of Education, Ain Shams University, and all staff members for providing all facilities required to the success of this work.

Finally, my endless appreciation to my kind parents and my beloved family for their support, patience, sacrifices and continuous encouragement.

I owe my mother, my sisters, and my brothers everything.

And last but not least, a very special thanks to my father, may he rest in peace, for all the love, support and encouragement he has always showed me.

TABLE OF CONTENTS

SU	MM	ARY .		X
Ι	HIS	STORY	AND MATHEMATICAL BACKGROUND	1
	1.1	Introd	luctory Concepts of Integral Equations	1
	1.2	Classi	fication of Integral Equations	3
		1.2.1	Fredholm Integral Equations	3
		1.2.2	Volterra Integral Equations	3
		1.2.3	Volterra-Fredholm Integral Equations	4
		1.2.4	Singular Integral Equations	4
	1.3	Classi	fication of Integro-Differential Equations	5
		1.3.1	Fredholm Integro-Differential Equations	5
		1.3.2	Volterra Integro-Differential Equations	5
		1.3.3	Volterra-Fredholm Integro-Differential Equations	6
	1.4	Fracti	onal Derivatives and Integrals	6
		1.4.1	Brief History	7
		1.4.2	The Gamma Function	8
		1.4.3	Beta Function	8
		1.4.4	Laplace Transformation and Convolution	9
		1.4.5	The Mittag-Leffler Function	9

		1.4.6 Preliminaries and Definitions of Fractional Calculus	10			
	1.5	The Variational Iteration Method (VIM)	12			
	1.6	Chebyshev Spectral Method	13			
		1.6.1 Chebyshev Polynomials	13			
	1.7	Differential Transform Method (DTM)	14			
	1.8	Homotopy Perturbation Method (HPM)	15			
	1.9	The Laplace Decomposition Method (LDM)	15			
	1.10	The Padé Approximant	16			
	1.11	Wavelet Methods	18			
		1.11.1 The Haar Wavelet Method (HWM)	19			
		1.11.2 The Legendre Wavelets Method (LWM)	20			
	1.12	Measure Theory	23			
		1.12.1 Integration	25			
		1.12.2 Completely Monotone Functions	28			
II	EX	ACT AND NUMERICAL SOLUTIONS FOR FRACTIONAL INTEG	RO			
	DIFFERENTIAL AND ABEL'S INTEGRAL EQUATIONS BY US-					
	ING VARIATIONAL ITERATION AND CHEBYSHEV SPECTRAL					
	ME	THODS	29			
	2.1	Introduction	29			
	2.2	Variational Iteration Method	31			
		2.2.1 Basic Idea of Variational Iteration Method	32			

	2.2.2	The VIM for Solving Fractional Integro-Differential Equations	32	
	2.2.3	Convergence Analysis	36	
2.3	The VIM for Solving Nonlinear System of Fractional Integro-Differential			
	Equat	ions	58	
2.4	The V	IM for Solving Abel's Integral Equations of the Second Kind	65	
2.5	6 Chebyshev Spectral Method			
	2.5.1	Some Properties of the Shifted Chebyshev Polynomials	77	
	2.5.2	The Shifted Chebyshev Operational Matrix (COM) Fractional Deriv-		
		atives	79	
2.6	Specti	ral Methods Based on COM for Fractional Differential Equations	82	
	2.6.1	Linear initial FDEs	82	
	2.6.2	Treatment of Nonhomogeneous Boundary Conditions	83	
	2.6.3	Nonlinear FDEs	83	
2.7	Cheby	shev Spectral Method for Fractional Integro-Differential Equations .	90	
	2.7.1	Fractional Integro-Differential Equations	91	
	2.7.2	System of Fractional Integro-Differential Equations	99	
2.8	3 Chebyshev Spectral Method for Abel's Integral Equations		107	
	2.8.1	Abel's Integral Equations	107	
	2.8.2	System of Abel's Integral Equations	110	

III	APPLICATIONS OF DIFFERENTIAL TRANSFORM METHOD, HO-					
	MOTOPY PERTURBATION METHOD, MODIFIED LAPLACE DE-					
	CO	COMPOSITION METHOD AND PADÉ APPROXIMATION 110				
	3.1	Introd	uction	116		
	3.2	Differe	ential Transform Method	117		
		3.2.1	Basic Idea of Differential Transform Method	118		
	3.3	Fraction	onal Differential Transform Method	137		
		3.3.1	Basic Idea of Differential Fractional Transform Method	137		
	3.4	Homo	topy Perturbation Method	153		
		3.4.1	Basic Idea of He's Homotopy Perturbation Method	154		
		3.4.2	The Modified Homotopy Perturbation Method (mHPM) $\ \ldots \ \ldots$	156		
	3.5	Homo	otopy Perturbation Method for Solving Fractional Differential Equations	167		
		3.5.1	Standard Homotopy Perturbation Method	167		
		3.5.2	Modified Homotopy Perturbation Method	168		
	3.6	The M	Indified Laplace Decomposition Method (mLDM)	178		
		3.6.1	Basic Definitions of Laplace Transforms	179		
		3.6.2	Modified Laplace Decomposition Method for Solving Fractional Integro-			
			Differential Equations	179		
	3.7	The P	adé Approximant	199		
IV	на	AR A	ND LEGENDRE WAVELETS METHODS FOR SOLVING			
	SYSTEMS OF INTEGRO-DIFFERENTIAL EQUATIONS AND SYS-					
	TEMS OF FRACTIONAL INTEGRO-DIFFERENTIAL FOLIATIONS 20					

4.1	Introduction			
4.2	Haar	Wavelet Method	207	
	4.2.1	Haar Wavelet Properties	208	
	4.2.2	Local Basis	209	
4.3	Haar	Wavelet Method for Solving System of Integro-Differential Equations	211	
	4.3.1	The System of Linear Fredholm Integro-Differential Equations	212	
	4.3.2	The System of Linear Volterra Integro-Differential Equations	216	
4.4	Haar	Wavelet Method for Higher-Order Boundary Value Problems	227	
	4.4.1	Haar Wavelet Method for Solving Fourth Order Integro-Differential Equations	227	
	4.4.2	Haar Wavelet Method for Solving Fifth Order Boundary Value Problems	231	
4.5	Haar '	Wavelet Method for Solving Fractional Integro-Differential Equations	234	
4.6		Wavelet Method for Solving System of Fractional Integro-Differential ions	242	
	4.6.1	The System of Linear Fredholm Fractional Integro-Differential Equations	243	
	4.6.2	The System of Linear Volterra Fractional Integro-Differential Equations	247	
4.7	Legen	dre Wavelets Method	252	
	4.7.1	Wavelets and Legendre Wavelets Properties	252	
	479	Function Approximation	253	

	4.8	Legendre Wavelets Method for Solving System of Integro-Differential Equa-			
		tions		254	
		4.8.1	The System of Linear Fredholm Integro-Differential Equations	254	
		4.8.2	The System of Linear Volterra Integro-Differential Equations \dots	257	
	4.9	Legeno	dre Wavelets Method for Higher-Order Boundary Value Problems	260	
		4.9.1	Legendre Wavelets Method for Solving Fourth Order Integro-Different Equations		
		4.9.2	Legendre Wavelets Method for Solving Fifth Order Boundary Value Problems	263	
	4.10		dre Wavelets Method for Solving Fractional Integro-Differential Equa-	265	
	4.11	Legend	dre Wavelets Method for Solving System of Fractional Integro-Differenti	al	
		Equati	ions	267	
		4.11.1	The System of Linear Fredholm Fractional Integro-Differential Equations	268	
		4.11.2	The System of Linear Volterra Fractional Integro-Differential Equations	269	
V	BAS	SKAK	OV-DURRMEYER AND SZÁSZ-MIRAKJAN-DURRMEY	ER	
	OPERATORS				
	5.1	Introd	uction	275	
	5.2	Prelim	inaries	275	
	5.3	Kerne	ls of the Durrmeyer Operators	278	

5.4	The Differential Operator $\mathbf{U}_{r,c}$ and the Bernstein Inequality $\dots \dots$	284
5.5	The Quasi-Interpolants	298
5.6	Durrmeyer Operators with respect to arbitrary Measure	304
5.7	Szász-Mirakjan-Durrmeyer Operator	305