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Abstract

This thesis consists of five chapters distributed as follows:
Chapter I

This chapter is an introduction to the basic concepts of integral equations. It includes
the classifications of integral and integro-differential equations. It also includes an
introduction to the basic definitions and the necessary properties for fractional
calculus such as the definitions of Riemann-Liouville, Caputo and discusses some
necessary mathematical definitions that will arise in the study of these concepts.

An introduction to the various methods used in this thesis to obtain the exact solutions
and the numerical solutions. It also includes an introduction to some theorems and
basic concepts of measure theory which will be used in this thesis.

Chapter Il

In this chapter, we improve and extend variational iteration method (VIM) and
Chebyshev spectral method to find the exact solutions and the approximate solutions
for fractional differential equations, fractional integro-differential equations, nonlinear
systems of fractional integro-differential equations and generalized Abel's integral
equations of the second kind. Moreover, we aim to study the convergence of the VIM
for fractional differential equations, fractional integro-differential equations, nonlinear
systems of fractional integro-differential equations and generalized Abel's integral
equations of the second kind and to address the sufficient condition for convergence.
The results obtained by variational iteration method and Chebyshev spectral method
in this chapter are compared with the exact solutions and with the results obtained by
some other authors, this comparison shows that we obtained better results and more
accurate.

Chapter 111

In this chapter, we apply the differential transform method (DTM) and homotopy
perturbation method (HPM) to solve fifth-order boundary value problem, system of
second-order boundary value problem, system of Volterra integral equations, systems
of linear and nonlinear integro-differential , Cauchy problem, boundary value problem
of fractional order, fractional integro-differential equations and nonlinear systems of
fractional integro-differential equations.

In addition, we extend the modified Laplace decomposition method (mLDM) and the
modified Laplace decomposition method with the Padé approximant (mLD-PA) to
solve boundary value problem of fractional order and systems of linear and nonlinear
fractional integro-differential equations. The results obtained by differential transform
method, fractional differential transform method, homotopy perturbation method,



modified homotopy perturbation method, modified Laplace decomposition method
and modified Laplace decomposition method with the Padé approximant in this
chapter are compared with the exact solutions and with the results obtained by some
other authors, this comparison shows that we obtained better results and more
accurate.

Chapter IV

In this chapter, we extend and generalize the Haar wavelet method (HWM) and
Legendre wavelets method (LWM) to solve systems of Fredholm and Volterra
integro-differential equations of the second Kkind, higher-order boundary value
problems, fractional integro-differential equations and systems of Fredholm and
Volterra fractional integro-differential equations of the second kind. Study problems
are performed to test the applicability, efficiency and accuracy of this method. The
results obtained by Haar wavelet method and Legendre wavelets method in this
chapter are compared with the exact solutions and with the results obtained by some
other authors, this comparison shows that we obtained better results and more
accurate.

Chapter V

In this chapter, we consider the kernels of Baskakov--Durrmeyer and the Szdasz--
Mirakjan--Durrmeyer operators. We establish a Bernstein type inequality for these
operators and apply the results to the quasi-interpolants. For the Baskakov--
Durrmeyer quasi-interpolants, we give a representation as linear combinations of
the original Baskakov--Durrmeyer operators and prove an estimate of Jackson--
Favard type and a direct theorem in terms of an appropriate K-functional. Also, we
present the Szasz--Mirakjan--Durrmeyer operator with respect to an arbitrary
measure in the one-dimensional case.
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