

Further Insights into the Diversity of Coagulase Positive Staphylococci: Special Consideration to Coagulase Gene Polymorphism and Reaction

A Thesis presented by

Nouran Mostafa Abd El-Razek B.V.Sc., Cairo University (2009)

For Master Degree
In Veterinary Medical Sciences, Microbiology
(Bacteriology - Immunology - Mycology)

Under the supervision of

Prof. Dr. Wagih Armanious Gad El Said

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Dr. Mahmoud Dardiri El-Hariri

Assistant Professor of Microbiology, Faculty of Veterinary Medicine Cairo University Prof. Dr. Mona Abd El Mohsen El Shabrawy
Professor of Microbiology,
National Research Center

بسم الله الرحمن الرحيم

(وقل اعملوا فسيرى الله عملكم ورسوله والمؤمنون)

سوره التو به

(سبحانك لا علم لنا إلا ما علمتنا انك أنت العليم الحكيم)

سوره البقرة

صدق الله العظيم

Acknowledgement

The student wishes to express her deep gratitude and sincere appreciation to Prof. Dr. Wagih Armanious Gad El-Said Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for suggesting the problem of this study, his supervision, fruitful guidance, continuous encouragement, valuable criticism, and help during the course of this study.

Special thanks as well as great appreciation are also given to Prof., Dr. Mona Abd El-Mohssen El-Shabrawy, Professor of Microbiology of National Research center for her supervision, fruitful advice and continuous help throughout the course of this study.

Special thanks, to Dr. Mahmoud EL Hariri, Assistant Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for his precious help during this study.

The student would like also, to offer her deep thanks to all staff members of the Microbiology Department, Faculty of Veterinary Medicine, Cairo University, who offered her valuable help, support and facilities, which must be reckoned to carry this work.

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

Name : Nouran Mostafa Abd Elrazek

Birth date : 18/7/1987

Nationality : Egyptian

Scientific degree : Master Degree

Specialty : (Bacteriology - Immunology - Mycology)

Thesis title : Further insights into the diversity of coagulase positive

Staphylorcocci special consideration to coagulase gene

polymorphism and reaction

Under the supervision of

Prof. Dr. Wagih A.Gad EL-Said, Prof. Dr. Mona El Shabrawy and Dr. Mahmoud EL-Hariri

Abstract

In this study 226 samples (80 human samples, 60 dog samples, 36 cat samples and 50 poultry samples) were examined for the presence of coagulase positive staphylococci by using conventional method and PCR. Based on conventional methods there is 32 isolates were identified coagulase positive by slide method, whereas this number was diminished by tube method to be 20 isolates. To confirm S. aurues isolates, Voges-Proskauer test was applied as simple confirmatory test for S. aurues. The test revealed 16 isolates were are full identified. Polymyxin B resistance test was used to differentiat coagulase positive staphylococci, and two isolates completelty identified as S. intermedius depending on phenotypic parameters. Thermonuclease and coagulase gene were amplified in both species S. aurues and S. intermedius with the same primer pairs. The PCR results of coagulase positive staphylococci were subjected to restriction digestion using RFLP with AluI. The banding profiles of RFLP were 4 distinct profiles (I, II, III &IV). Discrimination powers of RFLP not enough to differentiate S. aureus from S. intermedius. The sequencing for coa gene was done for selected 10 isolates including 2 S. intermedius isolates. The constructed phylogenetic trees for Staphylococcus isolates revealed a suppose of the major ancestor for animal infection cases could come from human cases. In spite of all isolates are from different origins but it's harboring the major one genotype of S. aureus clone. It is tempting to say that coa gene sequence of S. intermedius was reported as far as it is known for the first time in Egypt on GenBank with accession No. KU178988 & KU178993. It is loped that the data obtained puts this study in perspective when designing control strategies of staphylococcal infection as the issues in the concern.

Item	page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Coagulase positive staphylococci general overview.	5
2.2.Natural habitats and other sources of coagulase positive	7
staphylococcus	
2.3.1. Coagulase positive staphylococci as a human pathogen.	10
2.3.2. Prevalence of coagulase positive staphylococci in human.	13
2.4.Coagulase positive staphylococci as a veterinary pathogen	14
2.4.1. Canine coagulase positive staphylococci infection.	14
2.4.2. Feline coagulase positive staphylococci infection.	17
2.4.3.1. Poultry coagulase positive staphylococci infection.	17
2.4.3.2. Prevalence of staphylococci as a foodborne pathogen in	18
poultry.	
2.4.4. Coagulase positive staphylococci infections in other species.	21
2.5. Coagulation and fibrinolysis as virulence factor for	23
Staphylococcus aureus.	
2.6. Slide and tube coagulase test relationship	24
2.7. Staphylococci phenotypic and biochemical identification.	25
2.8. Molecular detection and characterization of Staphylococcus	29
aureus.	
2.8.1. Molecular identification by Nuclease gene (<i>nuc</i>) gene.	29
2.8.2. Staphylococcus species coagulase gene (coa) overview:	31
2.8.3. Molecular analysis of coagulase (coa) gene in S.aureus by	32
sequencing:	
2.8.4. Molecular analysis of coagulase (coa) gene in S. aureus by	33
Restriction Fragment Length Polymorphism (RFLP):	
3-MATERIALSAND METHODS	36
3.1-MATERIALS	36
3.1.1. Staphylococcous aureus standard strain	36
3.1.2. Samples	36
3.1.3. Media for primary isolation of <i>Staphylococci</i>	37
3.1.3.1. Mannitol salt agar	37
3.1.3.2.Brain-heart infusion agarwith 5% blood	37
3.1.3.3. Sheep blood agar base (Difco).	38
3.1.3.4. Tryptic Soy Broth No. 2 (TSB, Tryptone Soya Broth, CASO	39
Broth, So ybean Casein digest Broth, Casein Soya Broth)	
3.1.3.5. Baird-Parker agar	40
3.1.4. Stain (Cruickshank <i>et al.</i> , 1975).	41
3.1.5. Reagents used for biochemical identification of <i>Staphylococci</i> .	42

3.1.5.1. Catalase test (Cruickshank et al., 1975).	42
3.1.5.2. Rabbit plasma (BBL)	42
3.1.5.3. Barritt's reagent for Voges-Proskauer test (Barritt, 1936	43
3.1.6. Media used for determining the susceptibility of isolates to	43
various antibacterial agents.	
3.1.6.1. Mueller-Hinton broth.	43
3.1.6.2. Mueller-Hinton agar medium	43
3.1.6.3. Antibacterial discs:	44
3.1.6.4. Normal physiological saline:	44
3.1.6.5. McFarland standard tube (McFarland, 1907)	44
3.1.7. Preservation of bacterial isolates	44
3.1.8. Buffers and solutions used for molecular diagnosis:-	45
3.1.8.1. Buffers and solutions used for DNA extraction from the	45
bacterial isolates 3.1.8.1.1. Tris EDTA buffer (TE) pH 8.0:	
3.1.8.1.2. Lysozyme solution: (Sigma)	45
3.1.8.1.3. Proteinase K: (Sigma)	45
3.1.8.1.4. Solution of Sodium dodecyl Sulfate (10%): (Sigma)	45
3.1.8.1.5. Hexadecyltrimethylammonium bromide CTAB / NaCl	45
solution: (Sigma)	
3.1.8.1.6. Chloroform / Isoamyl alcohol (24:1): (Sigma)	46
3.1.8.1.7. Phenol / Chloroform / Isoamyl alcohol (25:24:1): (Sigma)	46
3.1.8.1.8. Isopropanol solution :(Sigma)	46
3.1.8.1.9. Ethanol solution (70%): (Sigma)	46
3.1.8.2. Buffers and reagents used for PCR Amplification	46
3.1.8.3. Buffers and reagents used for RFLP-PCR ITS-Amplicon	47
3.1.9. Sequencing of <i>Staphylococcus aureus</i> Coagulase gene by	48
3.1.10. Gel image analysis and phylogenetic software:	48
3.2. METHODS	48
3.2.1. Method for isolation of coagulase positive staphylococcus.	48
3.2.1.1 Sampling	48
3.2.1.2.Isolation and identification of coagulase positive staphylococci	48
3.2.1.2.1. Mannitol salt agar	48
3.2.1.2.2. Sheep blood agar	49
3.2.1.2.3. Tryptic soya agar	49
3.2.1.2.4. Baired barker agar	49
3.2.1.2.5. DNAs agar	49
3.2.1.2.6. Gram's Stain Procedure	50
3.2.1.3. Biochemical Identification of <i>Staphylococcus</i>	50
3.2.1.3.1. Catalase test (Cruickshank <i>et al.</i> , 1975):	50
3.2.1.3.2. Coagulase test	50
3.2.1.3.2.1. Slide method	50
3.2.1.3.2.2. Tube method	51

3.2.1.3.3. Voges-Proskauer test	51
3.2.1.4. Antimicrobial sensitivity test of <i>S. aureus</i> isolates	51
3.2.1.4.1. Preparation of standardized inoculum	51
3.2.1.4.2.Inoculation of the tested plates:	52
3.2.1.4. 3. Placement of disks	52
3.2.1.4.4. Reading of the results:	52
3.2.2. Molecular Identification of bacterial isolates	54
3.2.2.1. Genomic DNA extraction:	54
3.2.2.1.1. Genomic DNA extraction from Staphylococcus aureus	54
(Botes, 2007)	
3.2.2.2. Amplification of <i>nuc</i> and <i>coa</i> genes in all tested bacterial	55
isolates	
3.2.2.3. Restriction digests of <i>coa</i> gene amplicon (PCR-RFLP)	56
3.2.2.4. Molecular identification of in coagulase positive staphylococci	57
isolates by <i>coa</i> gene sequencing	
3.2.2.5. Sequence of <i>coa</i> gene in <i>Staphylococcus</i>	57
	58
3.2.2.6. Phylogenetic analysis	
3.2.2.7. Equipment and Apparatus	59
4-RESULTS	61
4.1. Recovery rate of <i>Staphylococcus</i> species from examined samples:	61
4.1.1. Recovery rate of <i>Staphylococcus</i> species from wound swabs	61
4.1.2. Recovery rate of <i>Staphylococcus</i> species from nasal swabs	61
4.2. Conventional identification & differentiation of Staphylococcus	63
isolates on the basis of their biochemical characteristics	
4.3. Phenotypic differentiation of examined <i>Staphylococcus</i> species	66
according to coagulase enzyme	66
4.3.1. Recovery rate of coagulase positive <i>Staphylococcus</i> species according to slide coagulase test	66
4.3.2. Recovery rate of coagulase positive <i>Staphylococcus</i> species	68
according to tube coagulase test:	
4.3.3. Variability of coagulase enzyme activity in Staphylococcus	71
aureus according time factor	
4.4. Recovery rate of coagulase positive Staphylococcus aureus	73
according to Vogus Proskauer test	7.4
4.5. Antibiogram patterns of coagulase positive staphylococci isolates from different sources	74
4.6. Genotyping of coagulase positive staphylococci isolates using	75
PCR for detection of	7.5
4.6.1. Nuclease gene.	75
4.6.2. Coagulase gene	75
4.7. Restriction Fragment Length Polymorphism Analysis of	76
Staphylococcus isolates coagulase positive gene	70
4.8. Staphylococcus isolates source modifiers data submitted to	78
Genbank	

4.9.Blast analysis of Staphylococcus isolates coa gene and other	79
references strains on GenBank	
4.10. Phylogenetic analysis of Staphylococcus aureus isolates coa	80
genes	
4.11. Phylogenetic analysis of Staphylococcus intermedius isolates	83
coa genes	
5.DISSCUSION	84
6. SUMMARY	100
7. REFERANCES	105
Arabic Summary	-

List of tables

Table	(1)	Types and numbers of examined samples	36		
Table	(2)	Zone diameter interpretation and standard of 53			
		different antimicrobial			
Table	(3)	Recovery rate of Staphylococci among the	62		
		examined samples			
Table	(4)	Conventional identification & differentiation of	64		
		Staphylococcus isolates on the basis of their			
		biochemical characteristics			
Table	(5)	Recovery rate of coagulase positive	67		
		Staphylococcus species according to slide coagulase			
		test			
Table	(6)	Coagulase positive Staphylococcus species (Tube	69		
	<i>(</i> -)	method			
Table	(7)	Early and late coagulase positive Staphylococcus on	71		
TD 1.1	(0)	tube coagulase test	70		
Table	(8)	Recovery rate of coagulase positive Staphylococcus	73		
TC 1.1	(0)	aureus according to Voges Proskauer test	7.4		
Table	(9)	Antibiogram patterns of coagulase positive	74		
Table	(10)	staphylococci isolates from different sources	77		
Table	(10)	Restriction Fragment Length Polymorphism	77		
		Analysis of coagulase positive gene Staphylococcus isolates coagulase positive gene			
Table	(11)	Biochemical reactions and other characteristics of	78		
1 aute	(11)	coagulase positive Staphylococcus	70		
Table	(12)	Staphylococcus isolates source modifier	79		
1 autc	(12)	data with accession n77umber <i>coa</i> gene	1)		
		sequences			
		sequences			

List of figures

Figure		Page
Fig. (01)	Simplified sequence of events during <i>S. aureus</i> infection- from breach of skin barrier and establishment of primary infection to metastatic systemic infection.	10
Fig. (02)	Recovery rate of staphylococci in wound swab samples from different origin	62
Fig. (03)	Recovery rate of staphylococci in nasal swab samples from different origin	63
Fig. (04)	Growth characteristics of <i>S. aureus</i> on mannitol salt agar showing fermentation of mannitol and give yellow colour colonies	65
Fig. (05)	A close-up of the characteristic beta hemolysis of staphylococci isolates on sheep blood agar media	65
Fig. (06)	Growth of Staphylococcus species on Baird-Parker agar plate.	66
Fig. (07)	Recovery rate of coagulase positive staphylococci according to positive staphylococci isolates from recovered different sources (slide coagulase test)	67
Fig. (08)	Recovery rate of coagulase positive staphylococci according to examined isolates from different source(slide coagulase test)	68
Fig. (09)	Recovery rate of coagulase positive staphylococci according to staphylococci isolates (tube method)	69
Fig. (10)	Recovery rate of coagulase positive staphylococci according to number of examined isolates (tube method)	70
Fig. (11)	Positive coagulase test	70
Fig. (12)	Recovery rate of early coagulase positive staphylococci after [4hr] according to total coagulase positive staphylococci by tube method	72
Fig. (13)	Recovery rate of late coagulase positive staphylococci post 18 hr according to total coagulase positive staphylococci by tube method	72
Fig. (14)	Electropherotic profile of <i>Staphylococcus</i> isolates positive thermonuclease gene (<i>nuc</i>)	75
Fig. (15)	Electropherotic profile of <i>Staphylococcus</i> isolates positive coagulase gene (<i>coa</i>)	76
Fig. (16a)	Ethidium bromide-stained agarose gel of <i>coa</i> PCR products digested with AluI (different AluI restriction profiles produced by more than one isolates). M: 3000 bp molecular weight marker (GeneRuler)	77
Fig. (16b)	Totalab 1D software banding size profile analysis of Staphylococcus isolates positive coagulase gene (coa) producing PCR product	77