STUDIES ON PRODUCTIVITY IN RUMINANTS UNDER THE SYSTEMS OF PRIVATE FARMS

BY NEIVEIN GAMAL MOHAMMAD FAHMY

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 1999

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Animal Breeding)

Department of Animal Production Faculty of Agriculture Ain Shams University

2005

STUDIES ON PRODUCTIVITY IN RUMINANTS UNDER THE SYSTEMS OF PRIVATE FARMS

BY NEIVEIN GAMAL MOHAMMAD FAHMY

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 1999

Under the supervision of:

Prof. Dr. E. S. E. Galal

Professor Emeritus of Animal Breeding, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Manal M. A. ElSayed

Associate Professor of Animal Breeding, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Approval Sheet

STUDIES ON PRODUCTIVITY IN RUMINANTS UNDER THE SYSTEMS OF PRIVATE FARMS

BY NEIVEIN GAMAL MOHAMMAD FAHMY

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 1999

This thesis for M.Sc. degree has been approved by:
Prof. Dr. Ezat Ata Afifi
Professor Emeritus of Animal Breeding, Faculty of
Agriculture, Moshtohor, Banha branch, Zagazig University
Prof. Dr. Abdel-Halim Ashmawy
Professor of Animal Breeding, Faculty of Agriculture, Ai
Shams University
Dr. Manal Mohammad Ahmad ElSayed
Associate Professor of Animal Breeding, Faculty of
Agriculture, Ain Shams University
Prof. Dr. El-Sayed Salah El-Dein Galal
Professor Emeritus of Animal Breeding, Faculty of
Agriculture, Ain Shams University
Date of examination: 19/10/2005.
Date of examination: 19/10/2005.

Acknowledgments

First and foremost, I am indebted to **Allah** forever, the most beneficent and merciful, without whose mercy and guidance this work would never been started or completed.

I would like to express my sincere gratitude to **Dr. E. Salah E. Galal**, Professor of Animal Breeding, Ain Shams University, for supervising this work, valuble advices and continuous help. His critical reading of this manuscript did much to help me preparing this thesis. Special thanks are due to him.

My deepest appreciation to **Dr. Hussein Mansour**, Professor of Animal Breeding, Faculty of Agriculture, Ain Shams University.

All thankful words for my supervisor **Dr. Manal Elsayed**, Associate Professor of Animal breeding, Faculty of Agriculture, Ain Shams University for her great efforts with me. She is the angel of this research. Thank you my old sister for your trusting with me.

Dr. Hamdy Elsayed, Professor of Animal Nutrition, Faculty of Agriculture, Ain Shams University, did his best to locate a data set suitable for this study among many farms that consult him. He generously spent his time to obtain the data. I am greatly indebted to him.

Special thanks are due to all staff of the Assiout farm, especially for **Mr. Hamed El-Shewekh** the manager of the Assiout farm for assisting in accessing the farm and providing the data during my farm visits.

Thanks are due **Dr. Emad Mousa**, Associate Professor of Animal Breeding, Faculty of Agriculture, Assiout University, for his assistance in the use of random regression program when needed.

Special thanks and sincere appreciation are due to the staff of Scientific Computation and Agricultural Informatics Unit at the Faculty of Agriculture, Ain Shams University, for their kind help. I would like to thank every one of them specially **Mr. Wael M. S. El-Desokey** for his cooperation through data collection.

I wish to express my sincere thanks, special indebtedness and deep love to **my mother** for her continuous encouragement, patience and thoughtfulness throughout the study. Thanks to **my brothers** and **my sisters** for their moral support, understanding and repeated prayers.

I am particularly grateful to **Dr. Reda Elsaid**, Lecture of Animal Breeding, Department of Animal Production, Institute of Desert Environment Research, Menoufia University, Sadat City, Egypt and **Dr. Hanaa Abdelharith**, Researcher, Animal Production Research Institute for many kind reasons. I consider them the best friends to me.

My sincere appreciation, gratitude and thanks to my friends especially my best friend Mrs. Fatten Abd El-Rahman, agricultural engineering, Animal Production Research Institute. Special thanks are due to Mr. Hatem M. Issmail, agricultural engineering, Animal Production Research Institute for their great help in entering data.

Last but not least, it is great honor to dedicate this work with all my love to the memory of my father.

ABSTRACT

Neivein Gamal Mohammad Fahmy. Studies on productivity in ruminants under the systems of private farms, Unpublished Master of Science thesis, Ain Shams University, Faculty of Agriculture, Department of Animal Production, 2005.

The objective of this study was to estimate genetic parameters of test-day milk yields (TDMY's) in the first three parities using random regression technique. Data used in the study were collected from the Assiout private farm in Assiout Governorate in the south of Egypt. In total, a data set of 8473 test-day milk yield (TDMY) records for the first three lactations (3875, 2993 and 1605, respectively) of 414 cows daughters of more than 66 sires and 197 dams was available from 1998 till 2004. Data were classified according to the month of calving into four seasons, winter, spring, summer and autumn. The statistical model included year-season, the linear and quadratic orders of age, fixed regression, a random additive genetic effect for each animal, a random permanent environmental effect for each cow and a random residual effect. The Incomplete Gamma Function (IGF) was chosen to describe the shape of the lactation curve. This function was fitted for each lactation for each cow. DFREML software was used to estimate the components of (co)variance of TDMY in a Random Regression Model (RRM). Estimates of the additive genetic correlations between TDMYs ranged form -0.978 to 0.993, -0.730 to 0.992 and -0.086 to 0.991 for the three parities, respectively. Estimates of heritability of TDMY increased from 0.030 for DIM 65 to 0.142 for DIM 185 then decreased to 0.035 for DIM 275 in the first parity. Heritability increased from 0.154 for DIM 65 to 0.215 for DIM 155 then decreased to 0.180 for DIM 215 in the second parity. Heritability decreased from 0.486 for DIM 5 to 0.409 for DIM 125 then increased to 0.696 for DIM 305 in the third parity.

Key words: Random regression model, Incomplete Gamma Function,

Genetic parameters, Test-day milk yield, Lactation curve,

Holstein

Table of Contents

	Page
ABSTRACT	i
Acknowledgments	iii
Table of Contents	I
List of Tables	III
List of Figures	V
List of Abbreviations	VI
1. Introduction	1
2. Review of Literature	2
2.1 Estimates of Heritability Using 305-Day Milk Yield	2
2.2. Test Day Model (TDM)	3
2.2.1. Advantageous of Test Day Model (TDM)	3
3. Material and Methods	7
3.1. Data	7
3.2 Management	7
3.3. Statistical Analysis	9
3.3.1. Model	9
3.3.2. Fitting the Curve	11
3.3.3. Procedure of Analysis	13
3.3.4. Simplifying of the G Matrix	13
4. Results and Discussion	16
4.1. Additive Genetic and Permanent Environmental Covariance	
Estimates for IGF Coefficients	16
4.2. Additive Genetic and Permanent Environmental	
Eigenvalues	18
4.3 Additive Genetic and Permanent Environmental	
Co(Variances) of TDMY	21
4.4. Phenotypic and Residual Variances of TDMYs	25
4.5. Additive Genetic Correlations and Heritability of TDMYs	27
4.6. Phenotypic Correlations Between TDMYs	32
4.7. Permanent Environmental Correlations Between TDMYs	35

Table of Contents

	Page
5. Summary and Conclusions	38
6. References	41
7. Arabic Summary	

List of Tables

Table		Page
1	Some reviewed estimates of heritability (h^2) \pm SE of	
	milk yield using 305-day milk yield in Holstein	
	cows	2
2	Some reviewed estimates of range of heritability (h ²) of	
	milk yield using random regression model in Holstein	
	cows	5
3	Some reviewed estimates of range of correlation of milk	
	yield using random regression model in Holstein	
	cows	6
4	Structure of the raw data in the first three parities	8
5	Means and standard deviations of TD in the first three	
	parities, kg	8
6	Estimates of additive genetic and permanent	
	environmental (co)variances in the first three parities for	
	coefficients (a's) of IGF, kg	16
7	Eigenvalues for the additive genetic covariances for	
	TDMY in the three parities	19
8	Eigenvalues for the permanent environmental	
	covariances for TDMY in the first three parities	20
9	Estimates of additive genetic variances and covariances	
	in the first three parities for TDMY,	
	kg ²	22
10	Estimates of permanent environmental variances and	
	covariances in the first three parities for TDMY,	
	kg ²	23
11	Estimates of phenotypic (P) and residual (R) variances	
	of TDMY kg^2 for DIM in the first three parities	26

List of Tables

Table		Page
12	Estimates of genetic correlations and heritability for	
	TDMY in the first three	
	parities	31
13	Estimates of phenotypic correlations between TDMYs	
	in the first three parities	34
14	Estimates of permanent environmental correlations	
	between TDMYs in the first three parities	37

List of Figures

Figure		Page
1	Estimates of eigenvalues for the additive genetic effect of	
	TDMY in the three parities	19
2	Estimates of eigenvalues for the permanent environmental	
	effect of TDMY in the three parities	20
3	Estimates of additive genetic and permanent environmental	
	variances for TDMY in the first three parities	24
4	Estimates of phenotypic variances for TDMY in the first three	
	parities	26
5	Estimates of residual variances for TDMY in the first three	
	parities	27
6	Genetic correlations between TDMYs in the first parity	29
7	Genetic correlations between TDMYs in the second parity	29
8	Genetic correlations between TDMYs in the third parity	30
9	Estimates of heritability for TDMYs in the first three	
	parities	30
10	Phenotypic correlations between TDMYs in the first parity	32
11	Phenotypic correlations between TDMYs in the second parity	33
12	Phenotypic correlations between TDMYs in the third parity	33
13	Permanent environmental correlations between TDMYs in the	
	first parity	35
14	Permanent environmental correlations between TDMYs in the	
	second parity	36
15	Permanent environmental correlations between TMDYs in the	
	third parity	36

List of Abbreviations

CF Covariance function

DFREML Derivative free restricted maximum likelihood

DIM Day in milk

IGF Incomplete gamma function

MV Multivariate MY Milk yield

RR Random regression

TD Test day

TDM Test day model

TDMY Test day milk yield

1. Introduction

Many factors affect milk production of the cow from one test-day (TD) to the next. It is difficult to model for whole 305-day yields taking into account all such factors (Jamrozik et al., 1996). A test-day model for genetic evaluation can account for these factors such as, day of the year (including weather conditions), management groups within a herd, and, for each cow, day in milk (DIM), pregnancy status and number of times of milking daily (Meyer et al., 1989 and Ptak & Schaeffer, 1993). Test-day model (TDM) can also account for the effect of test date, number of records, interval between records and order of test-day records (Reents and Dopp, 1996). Moreover, models using longitudinal measurements would include information about the pattern of a lactation curve for a cow (Schaeffer and Dekkers, 1994).

Many models have been described for the analysis of test-day yields by several studies (Wood, 1967, Ali and Schaeffer, 1987 and Wilmink, 1987). Random regression model (RRM) has become a popular choice for the analysis of longitudinal data or repeated records. This analysis is challenging because it requires numerous parameters ((co)variances between random regression (RR) coefficients) and measurement of error variances (Meyer, 2002), in addition to the (co)variance structure of the test-day yields (Liu et al., 2000).

The objective of this study was to estimate genetic parameters of test day milk yields (TDM's) in the first three lactations in single trait model with a small data set from a private Holstein dairy farm using random regression with the covariance function technique.

2. Review of Literature

Commercial herds in Egypt usually use 305-day MY or total milk yield in their herd evaluation. This requires that cows stay at least one full lactation. Moreover the 305-day model does not account for the non genetic factors affecting the (co)variance structure along the trajectory. In an effort to account for these factors **Ptak and Schaeffer (1993)** suggested a repeatability model. The repeatability model is simple, but assumes that the variance is constant along the trajectory. The multivariate (MV) model is used to analyze the longitudinal traits, where it assumes subsequent records as different traits. The main disadvantage of MV model is the large computational demands it requires.

2.1 Estimates of Heritability Using 305-Day Milk Yield

Table 1 shows estimates of heritability using 305-day MY in Egypt.

Table 1. Some reviewed estimates of heritability $(h^2) \pm SE$ of milk yield using 305-day milk yield in Holstein cows.

No	Р	h^2	Reference
767	1	0.43 <u>+</u> 0.12	Khattab and Sultan (1990)
10314	1	0.25 <u>+</u> 0.042	Ashmawy and Khalil (1990)
4200	na	0.25	Kassab and Salem (1999)
460	na	0.13 <u>+</u> 0.09	El-Barbary et al. (1999)
1391	1-3	0.09	Abou-Bakr et al. (2000)
2245	na	0.05	Abdel-Salam et al. (2001)
9622	1-3	0.14	Abdelharith et al. (2002)
1163	1	0.06 ± 0.06	Nigm <i>et al.</i> (2003)
2096	1-6	0.32	El-Arian <i>et al.</i> (2003)
1163	1	0.08 ± 0.08	Abou-Bakr (2003)
970	1	0.09 <u>+</u> 0.7	Zahed <i>et al.</i> (2003)
5642	na	0.54	Abdel-Gelil et al. (2004)
3.7	1 C	1.0	. 41.1

No: number of record; P: parity; na: not available