Telescopic crown versus Extra-coronal attachment as retainer for Kennedy class I with anterior modification area

(Strain gauge analysis)

Thesis submitted to faculty of dentistry, Ain shams university

In partial fulfillment of requirement for master degree in prosthodontics

Ву

Ahmed Atef El Mahdy

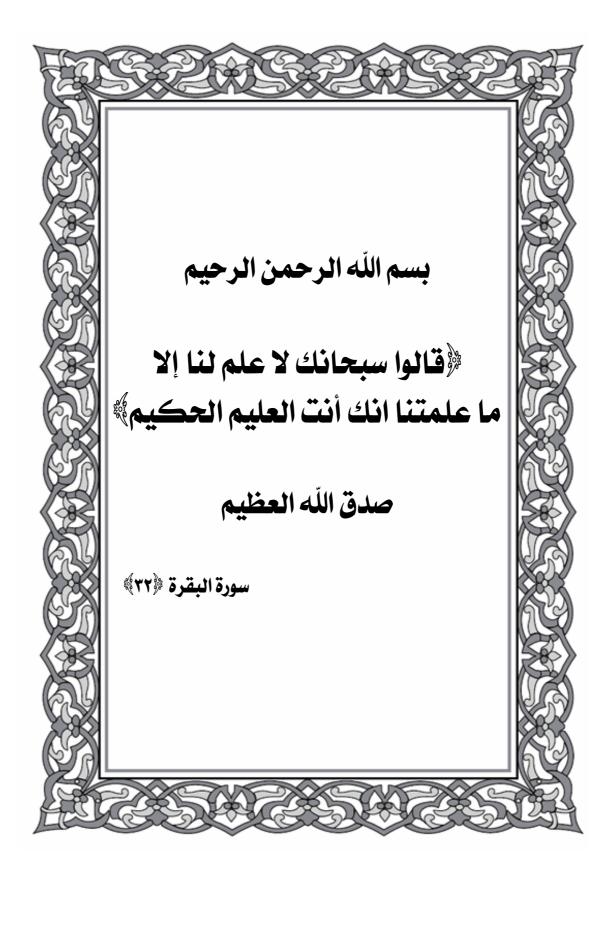
B.D.S, 2004

Ain Shams University

Supervisors

Dr. Ingy A. Talaat

Professor of prosthodontics and Chairman of prosthodontic department Faculty of dentistry


Ain shams university

Dr. Magdy Eid Mahamed

Associate professor of prosthodontics

Faculty of dentistry

Ain shams university

First of all I thank **God** for his guidance and support all over my path.

I would like to express my most sincere gratitude and grateful appreciation to **Dr. Ingy A. Talaat** Professor of prosthodontics and Chairman of prosthodontic department, Faculty of Dentistry, Ain Shams University for her kind guidance, sincerity, extraordinary supervision and unlimited support and help throughout my academic and clinical work.

I would like to thank **Dr.** Magdy Eid Mahamed
Associate professor of prosthodontics ,Faculty of Dentistry,
Ain Shams University for his excellent advice, valuable
stimulating guidance and help during this study.

Dedication

I wish to dedicate this work to

MY GREAT PARENTS,

MY LOVELY WIFE

MY CUTE SONS

List of Contents

		page
1	Introduction	1
2	Review of literature	4
	- Problems of Distal Extension Removable.	5
	Partial Denture	5
	- Possible solutions for problems of	7
	distal extension RPDs	7
	-Treatment Modalities of Distal	13
	Extension RPD with Anterior modification	13
	-Attachments	14
	- Types of Dental attachment	16
	-Extracoronal attachment	17
	-Types of Extracoronal attachment	19
	Stud attachment	19
	- OT cap attachment castable system	23
	-Bar attachment	27
	-Magnet attachment	29
	-Auxiliary attachments	32
	-Telescopic crowns	33
	-Designs of telescopic retainers	34

	-Stress Analysis	42
	-Experimental Stress Analysis	42
	- Brittle Lacquer Method	42
	- Holographic Interferometry	43
_	- StereoPhotogranmietric	43
_	- photoelastic Method	44
	- Finite element stress analysis	44
_	- Strain Gauge Method	45
_	-Principle of strain gauge	47
_	-Applications of strain gauge in	48
	prosthodontic research	40
3	Aim of the study	50
4	Materials and methods	51
5	Results	75
6	Discussion	91
7	Summary and conclusion	105
8	References	107
9	Arabic summary	-

List of Tables

Table	Title	Page
1	Mean, standard deviation (SD) values and results of paired t-test for comparison between stresses induced by the retainers at incisal anterior loading	77
2	Mean, standard deviation (SD) values and results of paired t-test for comparison between stresses induced by the two groups after bilateral loading	80
3	Mean, standard deviation (SD) values and results of paired t-test for comparison between stresses induced by the two retainers after unilateral loading	83
4	Mean, standard deviation (SD) values and results of repeated measures ANOVA and Tukey's tests for comparison between stresses induced with different loads in attachment group	87
5	Mean, standard deviation (SD) values and results of repeated measures ANOVA and Tukey's tests for comparison between stresses induced with different loads in telescopic crown retained denture.	90

List of Figures

Figure	Title	Page
1	Educational acrylic model containing the two canines, first and second premolars	52
2	The canines and premolars positioned in the rubber base impression, with their roots wrapped by tin foil.	52
3	Cast in wax containing the two canines, first and second premolars.	53
4	Acrylic cast with the two canines, first and second premolars.	53
5	The prepared abutment teeth of the acrylic cast	57
6	Wax pattern of primary copings of telescopic design.	57
7	Metal primary copings on acrylic model of telescopic design.	58
8	Checking the metal framework on the model for complete seating.	58
9	Finished telescopic overdenture on the acrylic model.	59
10	Fitting surface of the finished telescopic overdenture.	59
11	The prepared abutment teeth of the acrylic	62

	cast for the extra-coronal attachment design.	
12	Wax pattern of crowns for extra-coronal attachment design.	63
13	Metal crowns with distal male part on acrylic model for extra- coronal attachment design	63
14	Checking the metal framework on the model for complete seating.	64
15	Finished extra-coronal attachment overdenture on the acrylic model	64
16	Fitting surface of the finished extra-coronal attachment overdenture	65
17	Stone index.	66
18	strain gauges wire	68
19	medium body silicon rubber simulate the oral mucosal layer.	69
20	Four channel strain meter.	72
21	Load application to the overdenture on the acrylic model unilateral load.	72
22	Bilateral posterior loading.	73
23	Universal testing machine applied anterior load.	73
24	Bar chart representing mean stresses induced by the model using two different retainers anterior loading	78

25	Bar chart representing mean stresses induced by the two retainers after bilateral loading	81
26	Bar chart representing mean stresses induced by the two retainers after unilateral loading.	84
27	Bar chart representing mean stresses induced with different loads in attachment retained denture	87
28	Bar chart representing mean stresses induced with different loads in telescopic crown retained denture	90

INTRODUCTION

Introduction

Removable partial dentures restoring free-end saddles are subjected to vertical, horizontal and torsional forces that may become an adverse during functional and parafunctional activities. The addition of an anterior segment to this distal extension partial denture results in teeter-tooter action with inevitable torque and damage to the denture supporting structures. (1)

Biomechanically, it is better to replace missing anterior segment with fixed restoration rather than being included in the partial denture. However, in some situations it is necessary to replace the missing anterior teeth with a removable partial denture rather than the fixed restoration due to the length of the edentulous span, loss of large amount of the residual ridge by resorption, accident or surgery resulting into much vertical space preventing the use of fixed restoration or in which esthetics requirements can be better met through the use of teeth added to the denture framework. (2)

Different removable partial denture retainers have been introduced to control stress distribution transmitted to abutment teeth. An effective type of retainers, possessing retention, support and splinting action between multiple abutment teeth are telescopic retainer.,and extrocoronal retainers They also provide functional stability, acceptable esthetic and oral comfort. (3)

Telescopic crowns have also been used successfully in removable partial dentures end fixed partial dentures.

These crowns consist of an inner or primary telescopic coping, permanently cemented to an abutment tooth and a congruent detachable outer or secondary crown which is anchored in the detachable prosthesis. The secondary crown engages the primary coping to form a telescopic unit and serves as an anchor for the remaining of the dentition.⁽⁴⁾

Telescopic crowns provide direct and indirect retention and axial loading of the abutment teeth. They are also more hygienic, provide good esthetics and cross arch stabilization. (5)

The use of precision or semi precision attachments is well documented removable partial denture. They provide good direct and indirect retention, transmit the functional load down the long axis of the abutment teeth and more esthetically acceptable. (6)

Extra -coronal attachment having part or all of their mechanism outside the crown of the abutment tooth are used mainly in distal extension prostheses. Most of these attachments allow certain amount of movement between the two sections of the prosthesis. (7)

Many experimental stress analysis methods have been employed to evaluate biomechanical loads. These techniques compromise photo- elastic stress analysis, strain gauge analysis, holographic iterferromtry and finite element stress analysis. (8)

The several advantages listed in the literature for both telescopic crown and extracoronal attachment made the appropriate selection of either of them difficult.

Accordingly, this study was conducted to assess and compare the effect of telescopic crown and extracoronal attachment on stresses induced on the abutments in long span bilateral distal extension cases with the anterior modification area. (9)