ENVIRONMENTAL CHEMICAL STUDIES ON SOME CONCENTRATED ACTIVE COMPONENTS EXTRACTED FROM BARLEY

Submitted By Hala Hussien Shaban Waly

B.Sc. (Chemistry), Faculty of Science, Cairo University, 1989

Diploma of Environmental Sciences, Institute of Environmental Studies & Research,

Ain Shams University, 2001

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2007

A Thesis Submitted in Partial Fulfillment
Of
The Requirement For the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2017

APPROVAL SHEET

ENVIRONMENTAL CHEMICAL STUDIES ON SOME CONCENTRATED ACTIVE COMPONENTS EXTRACTED FROM BARLEY

Submitted By

Hala Hussien Shaban Waly

B.Sc. of Science, (Chemistry), Faculty of Science, Cairo University,1989 Diploma of Environmental Sciences, Institute of Environmental Studies &Research, Ain Shams University, 2001

Master in Environmental Sciences, Institute of Environmental Studies and Research,
Ain Shams University, 2007

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree
In

Environmental Sciences
Department of Environmental Basic Sciences
This Thesis Towards a Doctor of Philosophy Degree in
Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Samira Taha Rabie

Prof. of Chemistry of Natural Products International Research Center

2-Prof. Dr. Wail Sayed Ibrahim Abo Elmagd

Prof. of Organic Chemistry Faculty of Science Ain Sham University

3-Prof. Dr. Ahmed Ismail Hashem

Prof. of Organic Chemistry Faculty of Science Ain Sham University

4-Prof. Dr. Bothayna Mohamed Abd El-Latif

Head of Researcher - Food Technology Research Institute Agriculture Research Center

ENVIRONMENTAL CHEMICAL STUDIES ON SOME CONCENTRATED ACTIVE COMPONENTS EXTRACTED FROM BARLEY

Submitted By Hala Hussien Shaban Waly

B.Sc. (Chemistry), Faculty of Science, Cairo University, 1989

Diploma of Environmental Sciences, Institute of Environmental Studies & Research,

Ain Shams University, 2001

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2007

A Thesis Submitted in Partial Fulfillment
Of
The Requirement For the Doctor of Philosophy Degree
In

Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Ahmed Ismail Hashem

Prof. of Organic Chemistry Faculty of Science Ain Sham University

2-Prof. Dr. Bothayna Mohamed Abd El-Latif

Head of Researcher - Food Technology Research Institute Agriculture Research Center

ACKNOWLEDGMENT

First and forever I fell always indebted to God, the most beneficent and merciful

The authoress wishes to express her thanks and gratitude to *Prof. Ahmed Ismail Hashem*, Professor of Organic Chemistry, Faculty of Science, Ain Shams University for his valuable criticism and careful revision of the thesis.

I'm more than grateful to *Prof. Bothayna Mohamed Abd El-Latif*, Head of Researcher, Food Technology

Research Institute, Agriculture Research Center, not only

for suggesting the subject investigated, but also for here

continuous advice and valuable discussion during the course

of this work.

Finally, I would like to thanks my husband, my son and my daughter for their support and encouragement during the progress of this work.

ABSTRACT

Much attention has been paid recently to improving the nutritional value of foods. Notably, cereal foods have been negatively affected with the popularity of "nutritional" diets, such as the Atkins diet. Barley (Hordeum vulgaris L), is an ancient crop plant, and is also one of the world's most cultivated cereal crops. B-glucan is the effective naturally occurring compound that exists in the barley grains, which is a rich fiber fraction found as glucose polymer in the endosperm cell walls of barley and usually at a level of 2-8 % of grain weight. The objective of this study was to investigate the possibility of improving the bakery products by incorporation of high dietary fiber compound as β-glucan extracted from barley and the barley itself. Different extraction processes were analyzed in terms of their effects on β-glucan yield, processing characteristics and cost effectiveness. Extraction treatment affected the vield of barley β-glucan (BBG) fiber fraction, and β-glucan recovery efficiency ($P \le 0.05$). Functional properties of extracted β -glucan gum as solubility, viscosity, foaming properties, water hydration and fat absorption capacities were determined. Its chemical composition and physical properties make it a functional ingredient which can be used in different healthy food products, thus its health benefits are linked to its high viscosity and its nature as a soluble dietary fiber. These characteristics make it suitable as a fat replacer in food products, and repeated trails were carried out to incorporate it in cake as egg replacer by different levels of substitution (0, 25 and 50%). Low calories white layers cake was prepared using \(\beta\)-glucan as fat replacer by different levels of substitution (0, 50 and 75%). Also, different products as soft cake, pan and balady breads were made using whole barley flour and βglucan as partial substitutes of wheat flour. It was necessary to accomplish this investigation to study the physical, chemical and phytochemical properties of the above constituents. Also, physical properties, chemical compositions, sensory evaluation and staling rate of all prepared products were evaluated. The results of this study showed that the prepared products have acceptable nutrition values.

Keywords: Cereal foods, β -glucan, extraction processes, food products, phytochemical properties, nutrition values.

LIST OF ABBREVIATIONS

AACC: American Association of Cereal Chemists **AOAC**: Association of Official Analytical Chemists

AWRC: Alkaline water retention capacity

BG: β-Glucan

BBG: Barley β-glucan

cp: centipoisesDF: Dietary fiber

DRI: Dietary Reference Intakes

EFSA: European Food Safety Authority

FAC: Fat absorption capacity

FAOSTAT: Food and Agriculture Organization of the United Nations

FDA: Food and drugs administration

FNB: Food Nutrition Board

FSANZ: Food Standards Australia and New Zealand

GI: Glycemic index

GOP: Glucose- oxidase –peroxidase

HB: Hull less barley

HGCA: Home-Grown Cereals Authority

IDF: Insoluble Dietary Fiber

IPA: Iso-propanol

LSD: Least significance differences

NHANES: The National Health and Nutrition Examination Survey

OB: Oat β-glucan (Nutrim)
PBF: Pearled barley flour
SDF: Soluble dietary fiber
TDF: Total dietary fiber
TPC: Total phenolic content

USDA: United States Department of Agriculture

WBF: Whole barley flour

WHC: Water Hydration Capacity

CONTENTS

CONTENTS	Page
Abstract	
1. LITERATURE REVIEW	
1.1. Introduction	1 4
1.3. Phytochemical Contents and Antioxidant Properties of	_
barley	5
1.4. Beta Glucan Content in Barley	9 12
1.5. Extraction of β- glucan	16
1.7. Health Benefits of Barley and β-glucan in Food	10
products	17
1.8. β-Glucan as Fat Replacer in Foods	22
1.9. Egg Replacers	26
2. MATERIALS AND METHODS	
2.1. Materials	28
2.2. Methods	28
3. RESULTS AND DISCUSSION	
PART I	
Environmental and Chemical Studies on Some Extracted Active	
Components of Barley	61
PART II	
β-Glucan as Food Ingredient in Cake Production	77
PART III	
UTILIZATION OF BARLEY AND ITS EXTRACTED	
β-GLUCAN IN CAKE CHARACTERISTICS IMPROVEMENT	112

PART IV

Influence of Utilization of Barley and Its β-Glucan Extract on The	
Quality of Bread Products	132
CONCLUSIONS	171
SUMMARY	172
REFERENCES	175

LIST OF TABLES

	Page
1. LITERATURE REVIEW	
Table (1.1.): Fat content of different bakery products	23
2. MATERIALS AND METHODS	
Table (2.1.): Formula of pan bread	50 52
Table (2.3.): Formula of white layers cake	54 55
3. RESULTS AND DISCUSSION	
PART I	
Table (3.1.1.): Chemical composition of raw materials of barley flour and	
barley bran (dry weight basis)	62
Table (3.1.2.): Total, Soluble, Insoluble Dietary Fiber and Total, Soluble,	
Insoluble β-Glucan of Used Raw Materials	63
Table (3.1.3.): Percentage of Recovery of β-Glucan Content (%)	66
Table (3.1.4.): Proximate analysis of extracted β-glucan gum pellet	70
Table (3.1.5.): Functional properties of β-glucan pellet	72
Table (3.1.6.): The effect of different concentrations of extracted β -	
glucan and different shear rates on viscosity of extracted	
β-glucan	74
PART II Table (3.2.1.): Batter characteristics as influenced by fat replacer (β-Glucan) levels and physical properties of low calories	
cakes prepared with different fat replacer levels	79

Table (3.2.2.): Batter characteristics as influenced by egg white	
Replacer (β -glucan) levels and physical properties of	
angel food cakes (fat free) prepared with different egg	
replacer levels	82
Table (3.2.3.): Foaming stability of egg white and egg white	
substituted by different levels of β -glucan	83
Table (3.2.4.): Chemical composition of low calorie white layers cakes prepared with different fat replacer levels by β-lucan Table (3.2.5.): Chemical composition of angel food cakes (fat	86
free) prepared with different egg white levels by β- glucan	89
Prepared with different fat replacer levels by	0.2
β- glucan	92
glucan	95
glucan	97 99
Table (3.2.10.): Moisture contents (%) of low calorie white layers cakes prepared with different fat replacer levels by β-glucan during the storage periods	102
Table (3.2.11.): Moisture contents (%) of angel food cakes (fat free) prepared with different egg replacer levels by β-	
glucan during the storage periods	103
during the storage periods	107
glucan during the storage periods	110

PART III

Table (3.3.1.): Estimation of phytoc flour	± • • • • • • • • • • • • • • • • • • •	115
Table (3.3.2.): Physical properties of	f cake made by partially replaced	
Table (3.3.3.): Sensory evaluation of	f soft cakes made by partial	117 118
Table (3.3.4.): Chemical composition flour partially substit	on of soft cakes made by wheat uting by barley flour and extracted	121
Table (3.3.5.): Crust and crumb color partially substituting glucan	by barley flour and extracted β-	124
1 2	by barley flour and its β-glucan	127
	y barley flour and extracted β-	130
	an as partial substitutes f wheat	134
Table (3.4.2.): Chemical composition	on of balady breads made using lucan as partial substitutes of wheat	139
barley flour and β-gl	ucan as partial substitutes of	
wheat flour		141
(mg/100g)	stitutes of wheat flour	144
Table (3.4.5.): Sensory evaluation of		
Flour and β-glucan as wheat flour		49
Table (3.4.6.): Sensory evaluation of	f pan bread made using β- glucan	151
Table (3.4.7.): Crust and crumb cold	ors of balady bread using beta	

glucan and barley flour as partial substitutes of wheat	
flour	155
Table (3.4.8.): Crust and crumb colors of pan bread made using β -	
glucan and barley flour as partial substitutes of wheat	
flour	156
Table (3.4.9.): Moisture contents (%) of balady bread made using β -	
glucan and barley flour as partial substitutes of wheat	
flour during the storage periods	158
Table (3.4.10.): Moisture contents (%) of pan bread made using	
β -glucan and barley flour as partial substitutes of	
wheat flour during the storage periods	161
Table (3.4.11.): Alkaline water retention capacity (%) of balady bread	
made using beta glucan and barley flour as partial	
substitutes of wheat flour during the storage periods	165
Table (3.4.12.): Texture parameters of pan bread made by partially	
replaced of flour with β - glucan and barley flour	169

LIST OF FIGURES

Pa	age
1. LITERATURE REVIEW Fig. 1.1.: Basic structure of β-glucans in cereals with combined bonds β- $(1\rightarrow 3)$ and β- $(1\rightarrow 4)$	9
Fig. 1.2.: Extraction and purification of β-glucans from barley and oats (Biliaderis and Izydorczyk, 2007)	
2. MATERIALS AND METHODS	
Fig. (2.1.): Flow sheet of milling and sieving of barley grains	29 32
Fig. (2.3.): Aqueous-alkaline extraction process for beta-glucan concentration (Wood et al., 1989)	
Fig. (2.4.): Flow diagram for the enzymatic extraction and purification	
of β -glucan from bran in the laboratory (Bhatty, 1993) Fig. (2.5.): Quantitative extraction procedure for (A) soluble and (B)	. 35
total β -glucan determination in cereal-based food products	44
3. RESULTS AND DISCUSSION	
PART I	
Fig (3.1.1.): Total, Soluble, Insoluble Dietary Fiber and Total, Soluble, Insoluble β-Glucan of Barley flour and bran Fig (3.1.2.): Percentage of Recovery of β-Glucan Content (%) by	64
Water Extraction, Water-Alkaline Extraction and Alkalin Enzymatic Extraction method	67
Fig (3.1.3.): HPLC Chromatogram for Extracted β- glucan	
β- glucan and different shear rates on viscosity of extracte β-glucan	
PART II	70
Fig (3.2.1.): Comparison of specific volume measurements of white layers Cakes made using β-glucan as fat replacer	80
Fig (3.2.2.): Comparison of specific volume measurements of angel food cakes.	83
Fig (3.2.3.): Chemical composition of low calorie white layers cakes prepared with different fat replacer levels by β-glucan (on dry weight basis)	87
Fig (3.2.4): Chemical composition of angel food cakes (fat free)	

prepared with different egg replacer levels by β-glucan	90
Fig (3.2.5.): Sensory evaluation of low calorie white layers cakes	
prepared with different fat replacer levels by	
β- glucan	93
Fig (3.2.6.): Sensory evaluation of angel cakes (fat free) prepared with	
different egg replacer levels by β-glucan	95
Fig (3.2.7.): Crust and crumb colors of white layers cakes prepared with	
different fat replacer levels by β-glucan	98
Fig (3.2.8.): Crust and crumb colors of angel food cakes (fat free)	
prepared with different egg replacer levels by β- glucan	100
Fig (3.2.9.): Moisture decrement (%) of angel food cakes prepared with	
different egg replacer levels by β- glucan during the storage	
periods	104
Fig (3.2.10.): Moisture decrement (%) of angel food cakes prepared with	
different egg replacer levels by β- glucan during the storage	
periods	104
Fig (3.2.11.): Texture parameters of low calorie white layers cakes	
prepared with different fat replacer levels by β-glucan	
during the storage periods	108
Fig (3.2.12.): Texture parameters of angel food cakes (fat free) prepared	
with different egg white replacer levels by β -glucan during	
the storage periods	111
PART III	
Fig (3.3.1.): Sensory evaluation of cakes made by partially replaced	
with β-glucan and barley flour	119
Fig (3.3.2.): Chemical composition of soft cakes made by wheat flour	
partially substituting by barley flour and extracted β -	
glucan	122
Fig (3.3.3.): Crust and crumb colors of cakes made by wheat flour	
partially substituting by barley flour and its β - glucan	
extract	125
Fig (3.3.4.): Moisture decrement (%) of cakes made by wheat flour	
partially substituting by barley flour and extracted β -	
glucan during the storage periods	128
Fig (3.3.5.): Change in texture parameters of soft cakes made by	
barley flour and its β -glucan extracts as partial substitutes	
of wheat flour during the storage periods	131