MONITORING AND ASSESSMENT ENVIRONMENTAL CHANGES IN LAKE MARIOUT USING REMOTE SENSING AND GIS TECHNIQUES

Submitted By Amany Morsi Mohamed Abd El-Aziz B.Sc. Communication and Electronics Engineering,

Helwan University, 2002

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In

Environmental Science

Department of Environmental Engineering Science
Institute of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET

MONITORING AND ASSESSMENT ENVIRONMENTAL CHANGES IN LAKE MARIOUT USING REMOTE SENSING AND GIS TECHNIQUES

Submitted By

Amany Morsi Mohamed Abd El-Aziz

B.Sc. Communication and Electronics Engineering, Helwan University, 2002

This Thesis towards a Master Degree in Environmental Science has been approved by:

Name		Signature
1-	Prof. Dr. Aly Nabih El-Bahrawy Professor of Hydraulics Department, Faculty of Engineering, Ain Shams University, Egypt.	
2-	Prof. Dr. Noha Samir Donia Professor, Head of Department of Environmental Science, Institute of Environmental Studies and Research, Ain Shams University, Egypt.	
3-	Prof. Dr. Ashraf Khaled Helmy Professor, Head of Space Sciences and Strategic Studies Division, National Authority for Remote Sensing and Space Sciences, Ministry of Higher Education and Scientific Research, Egypt.	•••••

MONITORING AND ASSESSMENT ENVIRONMENTAL CHANGES IN LAKE MARIOUT USING REMOTE SENSING AND GIS TECHNIQUES

Submitted By

Amany Morsi Mohamed Abd El-Aziz

B.Sc. Electronics and Communication Engineering,

Helwan University, 2002

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Master Degree

In

Environmental Science

Department of Environmental Engineering Science
Institute of Environmental Studies and Research
Ain Shams University

Under The Supervision of:

1- Prof. Dr. Noha Samir Donia

Professor, Head of Department of Environmental Science, Institute of Environmental Studies and Research, Ain Shams University, Egypt.

2- Dr. Sameh Bakr El-Sayed El-Kafrawy

Associate Professor, Head of Marine Sciences Department, National Authority for Remote Sensing and Space Sciences, Ministry of Higher Education and Scientific Research, Egypt.

ACKNOWLEDGMENT

First of all, I thank the almighty Allah for his endless Grace and Blessing on me during this study.

I would like to express my special appreciation and thanks to my **Prof. Dr. Aly Nabih El-Bahrawy**, he has been a tremendous mentor for me. I would like to thank him for encouraging, providing me with significant, constructive suggestions in the research, and for allowing me to grow as a researcher.

I am deeply grateful to **Prof. Dr. Noha donia** for her kind supervision on this research, patience, helpful advices, time, tolerance and encouragement.

Special thanks to **Dr. Sameh Bakr El-Kafrawy**, Associate Professor, for his valuable supervision, patience, support, valuable criticisms, great help in the field and lab work and the facilities provided throughout the different stages of the work.

I wish to express my deepest sense of gratitude and sincerest appreciation to **Prof. Dr. Aymen Nasr,** Head of the Data Reception, Analysis and Receiving Station Affairs Division in my Organization (**NARSS**), for his excellent advice, enthusiastic guidance, and continuous encouragement towards the successful completion of this study. This thesis could not have completed without your generous and professional assistance.

I like to express my warmest gratitude and appreciation to **Associate. Prof. Safaa Hassan, Dr. Marwa Sayed, and Mr. Ahmed Bahy,** Data Reception, Analysis and Receiving Station Affairs Department, **NARSS**, for their continuous encouragement and valuable advice.

Thanks to Eng. Amira Sabhy, Assistant Researcher, Data Reception, Analysis and Receiving Station Affairs Department, NARSS, for her great support and significant guidance during work.

Thanks to **Dr. Mohamed Metwally**, Researcher in Data Reception, Analysis and Receiving Station Affairs Department, **NARSS**, for helping me in Remote sensing analysis.

Thanks to **Mr. Ehab Samir**, GIS Specialist in Data Reception, Analysis and Receiving Station Affairs Department, **NARSS**, for helping me in statistical analysis.

Special thanks to **Ms. Manar Ahmed**, Marine Science Specialist in Marine Science Department, **NARSS**, for significant guidance during work and for helping me in GIS analysis.

Thanks to Mrs. Doaa Mohamed, GIS Specialist in Marine Science Department, NARSS, for helping me in GIS analysis.

Thanks to **Eng. Noha Samy**, The Egyptian Ministry of the Environment, for her great help me in getting WQP.

I wish to express my sincere gratitude to all staff members of Data Reception, Analysis and Receiving Station Affairs Division and Marine Science Department in my Organization (NARSS), for their help during the thesis stages and the field trip.

Finally, my deep thanks and all respect to my beloved mother and my family for their love, warm caring, support, praying for me and great patience throughout the time during this study.

I dedicate this thesis to Soul of my Father

My Beloved Mother

My Sisters Rania and Bosy

My Brothers Mohamed and Ahmed

And my best friends

Ilham, Marwa, Amira

ABSTRACT

Mariout Lake has continually undergone extensive alteration as a result of anthropogenic activities, thus threatening environmental equilibrium in Alexandria.

Detecting the magnitude of alteration and anticipating future change are crucial for managing the study area, but challenging because they require long-term records of chemical and biological water quality, which are not widely available. Moderate resolution remote sensing imagery is a rich and temporally extensive source of information about ecological systems and may be useful for detecting the past and predicting future changes in estuarine ecosystems. So, the government has recognized the need for effective monitoring and management to avert the declining condition.

Multidates satellite images have been used in this study to detect the trends of environmental changes in Mariout Lake, particularly for the main two lake ecosystems; water, and vegetation. The study focuses on the aquatic vegetation and the water area of Mariout Lake during the past four decades from 1972 to 2016. The results reported in this study represented the way in which ecosystem degradation processes, affecting Lake Mariout, are increased due to external factors (human activities) of drying and reclaiming some areas to estimate the consequential effects on the lake.

This study explores the applications of Remote Sensing (RS) and Geographical Information Systems (GIS) in the collection of information and analysis of data. Atmospheric, Radiometric, and Geometric corrections were employed to process satellite images, calculating boundary area (total, water, and aquatic vegetation) for each basin of the study area, change detection

method and applying some indices as NDWI, CWQI, and deriving regression models using tools of GIS.

The analysis revealed a high percentage of plants and decreasing water, in the study area. The regression modeling showed an extremely high integration between satellite image and field data to extract Water Quality Parameters from satellite image using ARCGIS (10.2.2) and SPSS (19) Software. These results support the need for effective conservation strategies and a land use plan for the study area to support the development of effective lake management strategies.

TABLE OF CONTENTS

ACKNOWLEDGMENT	I
ABSTRACT	IV
TABLE OF CONTENTS	VI
LIST OF FIGURES	IX
LIST OF TABLES	XII
LIST OF ABBREVIATIONS	VI
CHAPTER (1): INTRODUCTION	
1.1 Introduction	1
1.2 Problem Statement	4
1.3 Objectives of the study	4
1.4 The Study Area	6
1.5 Work plan	11
CHAPTER (2): LITERATURE REVIEW	
2.1 Egyptian lakes	13
2.1.1 Lakes Problems	14
2.1.2 Mariout Lake Problems	15
2.2 Remote Sensing and GIS Techniques	27
2.3 Water quality	34
2.3.1 Water Quality Assessment	36
2.3.2 Water quality management	37
2.3.3 Heavy Metal	39
2.3.4 Water Quality Indices	43
CHAPTER (3): MATERIALS AND METHODS	
3.1 Field Work	45
3.1.1 The objectives of field survey	45
3.1.2 Data Collection	46
3.1.3 Global Positioning System (GPS)	46
3.1.4 Water Depth Measurement	48
3.1.5 Water Quality Multiprobe	49
3.1.6 Obstacles	50
3.2 Data Availability & Software	53
3.2.1 Remote sensing data	53
3.2.2 Topographic Data	57
3.2.3 Reference Image	58

3.2.4 EEAA Water Quality Data	58
3.2.5 Software	58
a) Image processing Programs	58
b) Statistical Software	58
3.3 Methodology	59
3.3.1 Image Processing	61
3.3.1.1 Layer Stacking	61
3.3.1.2 Data Subsetting	61
3.3.1.3 Image Correction	62
a) Geometric correction	62
b) Radiometric Correction	66
c) Atmospheric correction	66
3.3.2 Image Post–Processing	74
3.3.2.1 Spectral Reflectance Signatures	74
3.3.2.2 Total Area Calculation	76
3.3.2.3 Band Ratio Method	78
3.3.2.4 Topo to Raster Interpolation	78
3.3.2.5 Surface Water Detection using NDWI	79
3.3.2.6 Change Detection Technique	81
3.3.2.7 Canadian Water Quality Index CWQI	81
3.3.2.8 Mapping WQP's through In-Situ Measurements	85
and	
Landsat-8 (ETM+) Satellite Data	
CHAPTER (4): RESULTS AND DISCUSSION	
4.1 Results of the Field Work	91
4.2 Spectral Reflectance Signatures	96
4.3 Total Area Calculation	98
4.4 Surface Water Detection using NDWI	101
4.5 Change Detection Analysis	105
4.6 Canadian Water Quality Index (CWQI)	106
4.7 Mapping WQP's through In-Situ Measurements and	114
Landsat-8 (ETM+) Satellite Data	
4.7.1 Correlation Analysis and Multiple Regression Models	115
4.7.2 Validation for Model Regression	127

CHAPTER (5): CONCLUSIONS AND RECOMMENDATIONS	
5.1 Conclusions	129
5.2 Recommendations	131
5.3 Future Studies	132
SUMMARY	133
REFERENCES	135
APPENDICES	
Appendix A: Water quality parameters of 10 stations from	146
2010	
to 2014	
Appendix B: Spectral reflectance values of Landsat-8 data in	151
the ten	
sampling sites at Mariout Lake during 11- 2013	
Appendix C: Correlation matrix of OLI bands and WQPs	153
using	
Pearson's correlation equation for Mariout Lake	
during	
November 2013	
المستخلص	I
المستخلص الع ب	П

LIST OF FIGURES

Figure		Page
Figure (1.1)	: Egyptian Lakes	3
Figure (1.2)	: Lake Mariout in 1802 following its first inundation by the British Army	8
Figure (1.3)	: False Color Composite Image (NIR, Red, Green), Rapideye Image	9
Figure (3.1)	: a) Trimble Juno ST GPS, (b) Field Trip Snapshot	46
Figure (3.2)	: Locations of 10 Stations in The Study Area	47
Figure (3.3)	: The Echo-sounder	48
Figure (3.4)	: a) The Manta 2 TM Water Quality Multiprobe, b) Snapshots of Field Trip using Manta 2 TM Water Quality Multiprobe	50
Figure (3.5)	: Snapshots from Field Trip Obstacles	51
Figure (3.6)	: Methodology Flowchart	60
Figure (3.7)	: Study Area Subset	62
Figure (3.8)	: The geometrically corrected images (a) raw image, (b) geometric corrected image	65
Figure (3.9)	: Before and After The Atmospheric Correction for Satellite Images	73
Figure (3.10)	: Spectral Resolution of Different Materials	75
Figure (3.11)	: Environmental Changes in Mariout Lake from Satellite Imagery during The Last Four Decades (1972 – 2016)	77

Figure		Page
Figure (3.12)	: Flowchart of Mapping WQP's	90
Figure (4.1)	: Stations' Locations for Mariout Lake	92
Figure (4.2)	: Bathymetry Map, and Contour Lines	94
Figure (4.4)	: Shape File for each Basin of Mariout Lake from 1972 to 2016	98
Figure (4.5)	: Overall Changes of Mariout lake during 1972 to 2016	100
Figure (4.6)	: Changes in each Basin of Mariout Lake during 1972 to 2016	100
Figure (4.7)	: NDWI Images of the study area (a) 1972, (b) 1984, (c) 1997, (d) 2001, (e) 2006, (f) 2009, (g) 2014, (h) 2016	102
Figure (4.8)	: NDWI Changes of Mariout Lake during 1972 to 2016	104
Figure (4.9)	: Change Detection Images a) before 1972; b) after 2016; c) change detection map (difference image)	106
Figure (4.10)	: Spatial Interpolation Maps of CWQI in Mariout Lake Water. (a) 2010, (b) 2011, (c) 2012, (d) 2013, and (e) 2014	110
Figure (4.11)	: Comparison between Measured and Predicted of the eight WQP (PH, DO, BOD, CHL-a, TSM, NH ₄ , TP, and NO ₃) at the ten stations at Mariout Lake in Nov 2013	119

Figure		Page
Figure (4.12)	: Cartographic Maps of PH, DO, BOD, CHL-a, TSM, NH ₄ ,TP, and NO ₃ distribution as obtained from GIS analysis in Mariout Lake during	123
	Nov. 2013	

LIST OF TABLES

Table		Page
Table (2.1)	: Area Changes of Mariout Lake	18
Table (2.2)	: Water Quality Field Measurements during December2012	21
Table (3.1)	: Field Equipments and its Uses	46
Table (3.2)	: Selected Stations, Common Names and their Latitudes and Longitude in Mariout Lake	48
Table (3.3)	: Characteristics of LandSat-1 (MSS)	54
Table (3.4)	: Characteristics of LandSat-5 (TM)	54
Table (3.5)	: Characteristics of SPOT-1	54
Table (3.6)	: Characteristics of LandSat-7 (ETM+)	55
Table (3.7)	: Characteristics of SPOT-5	55
Table (3.8)	: Characteristics of SPOT-4	55
Table (3.9)	: Characteristics of Landsat-8 (OLI_TIRS)	56
Table (3.10)	: Characteristics of Rapid Eye	56
Table (3.11)	: Characteristics of Sentinel-2	57
Table (3.12)	: Root Mean Square Error (RMSE) of Geometrically Corrected Images	64
Table (3.13)	: Parameters used in The Atmospheric Correction Process	72
Table (3.14)	: Range of CCME-WQI	85
Table (3.15)	: Landsat-8 Data Product	86