

AinShamsUniversity
Faculty of Dentistry
Department of Orthodontics
& Pediatric Dentistry

Effectiveness of Mepivacaine as a Primary Intraligamentary Injection Administered with Computer-Controlled Local Anesthetic Delivery System in Vital Pulpotomy (Interventional Study)

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University for Partial Fulfillment of the Requirements of the Master's Degree in Pediatric Dentistry

By

AmmarRushdiKhalilAbdel Fatah

B.D.S. (2006) Faculty of Dentistry Khartoum University

Supervisors

Prof. Dr. Amr Mahmoud Abdel Aziz

Professor and Head of Pediatric Dentistry
& Dental Public Health Department
Faculty of Dentistry
Ain Shams University

Prof. Dr. Fouada Mohamed Ali Hedyia

Professor and Chairman of Psychological Studies Department Childhood Postgraduate Studies Institute Ain Shams University

Dedication

This Thesis is lovingly dedicated to...

My mother, who taught me that success is not the key to happiness. Happiness is the key to success. If we love what we are doing, we will be successful.

My father, who taught me that luck is not something that is given to us at random and should be waited for. Luck is the sense to recognize an opportunity and the ability to take advantage of it.

My sister & brothers, who never cease to support me, motivated me to do a good work, encouraged me to try something new and taught me how to think.

My uncleSaadBarakat, my uncle Amin Barakatand their families, who were a great help in my life.

All my respected teachers and professors, who have inspired and guided me through every moment of my life.

My friends, who have always advised me, never spare any effort to help me and trusted me to do this work.

My future wife, who I will spend my rest of life with her.

Everyone who spent his life searching for truth and knowledge.

In the Name of Allah, the Most Beneficent, the Most Merciful

Acknowledgment

All Praise are due to Allah. First and foremost I thank **Allah**, the Generous, for having finally made this humble effort a reality. We praise Him because if it were not for His Graciousness, it would never materialize, as He Himself, reminds us in a QudsiHadeeth: "...Know if the Nation (all mankind) were to gather together to benefit you with something, it would only benefit you with something that Allah had already prescribed for you..." [At-Al Tirmidhi].Also, the Messenger of Allah (peace be upon him) said:"Whoever does not show gratitude to mankind is not grateful to Allah" [Abu Dawood, Ahmad & others].

I, therefore, express my deepest gratitude to all those who contributed directly or indirectly to bringing this publication to this final format, because I would never have been able, by myself, to achieve this.

There are some people who deserve special mention because of their tremendous sacrifice and help in seeing this job throughand they are:

Prof. Dr. Amr M.Abdelaziz, Professorand Headof Pediatric Dentistry & Dental Public Health Department, Faculty of Dentistry, Ain Shams University, who has been the ideal thesis supervisor. His sage advice, insightful criticisms, and patient encouragement aided the writing of this thesis in innumerable ways.

I would also like to thank **Prof. Dr. Fouada M.Hedyia**, Professor and Chairman of Psychological Studies Department, Childhood Postgraduate Studies Institute, Ain Shams University, whose steadfast support of this project was greatly needed and deeply appreciated.

May Allah, the Most High bless all of us, and may He cause the efforts of all involved to be purely for Him, and may He store its reward for us with Himself. Ameen.

Tables of Contents

List of Abbreviations	I
List of Figures	III
List of Tables	V
Introduction	1
Review of Literature	4
Aim of the Study	36
Patients & Methods	37
Results	62
Discussion	87
Summary	94
Conclusions	96
Recommendations	97
Appendices	98
References	100

List of Abbreviations

Abbreviation	Definition
AMSA	anterior middle superior alveolar
ANOVA	analysis of variance
ASA	anterior superior alveolar
BM	behavior modification
CASI	conventional atraumatic syringe injection
CCLADS	computer-controlled local anesthetic delivery system
CDS-IS	computerized delivery system for intrasulcular
CFSS-DS	Dental Subscale of the Children's Fear Survey Schedule
CHEOPS	Children's Hospital of Eastern Ontario pain Scale
CNS	central nervous system
CVS	cardiovascular system
DPS	dynamic pressure sensing
ECS	Eland Color Scale
EDA	electronic dental anesthesia
EMLA	eutectic mixture of local anesthetics
FDA	Food and Drug Administration
FPS	Face Picture Scale
IAN	inferior alveolar nerve
IASP	International Association for the Study of Pain
Ю	intraosseous
LA	local anesthesia

MBPS Modified Behavioral Pain Scale

mg milligram

mg/kg milligram per kilogram

ml milliliter

mm millimeter

MRD maximum recommended dose

MSA middle superior alveolar

 N_2O nitrous oxide

P-ASA palatal anterior superior alveolar

PDL periodontal ligament

PDP postoperative dental pain

pH A measure of the activity of the solvated hydrogen ion

PSA posterior superior alveolar

psi pound per square inch

SEM sound, eye &motor

STA Single Tooth Anesthesia

TENS transcutaneous electrical nerve stimulation

VAS Visual Analogue Scales

VASOF Visual Analog Scale of Faces

VDS Venham Distress Scale

VRS Verbal Response Scale

List of Figures

Figure 1: The standard periodontal ligament (PDL) technique using a
"blind" approach and placement of the needle into the PDL. The traditional
technique relies on subjective "feel" of the operator
Figure 2: Single Tooth Anesthesia (STA) System
Figure 3: Diagram showing the component of Single Tooth Anesthesia
(STA) system
Figure 4: Side–loading stainless steel aspirating syringe
Figure 5: A prearranged signal of raisig a hand tells the operator that the
procedure is unconfotable
Figure 6: Placing the needle of STA system in the gingival sulcus51
Figure 7: Visual Analog Scale of Faces
Figure 8: A video record during administration of local anesthetic 56
Figure 9: A video record during pulpotomy procedure58
Figure 10: Gender distributions in the three groups63
Figure 11: Mean age values in the three groups
Figure 12: Teeth distributions in the three groups
Figure 13: Bar chart representing comparison between mean VASOF with
the two techniques in each group
Figure 14: Bar chart representing comparison between mean VASOF in
the three groups67
Figure 15: Bar chart representing comparison between mean VASOF
before and after anesthesia in each group 69
Figure 16: Bar chart representing comparison between mean Frankle
Behavior Scale with the two techniques in each group71
Figure 17: Bar chart representing comparison between mean Frankle
Behavior Scale in the three groups

Figure 18: Bar chart representing comparison between mean SEM scales
with the two techniques in each group74
Figure 19: Bar chart representing comparison between mean SEM Scale in
the three groups75
Figure 20: Bar chart representing comparison between incidence of PDP
with the two techniques in each group
Figure 21: Bar chart representing comparison between incidence of PDP in
the three groups
Figure 22: Bar chart representing comparison between intake of analgesics
with the two techniques in eachgroup
Figure 23: Bar chart representing comparison between intake of analgesics
in the three groups80
Figure 24: An evidence of lip biting after local anesthesia by conventional
syringe81
Figure 25: Bar chart representing comparison between lip biting with the
two techniques in each group.
Figure 26: Bar chart representing comparison between lip biting in the
three groups with conventional technique83
Figure 27: Circumferential gingival blanching after injection by STA
system84
Figure 28: Bar chart representing comparison between buccal blanching
with the two techniques in each group85
Figure 29: Bar chart representing comparison between buccal blanching in
the three groups with STA technique.

List of Tables

Table 1: Drug: Mepivacaine-with vasoconstrictor [Author's maximum
recommended dose]
Table 2: Mepivacaine
Table 3: Frankle Behaviour Rating Scale
Table 4: Ratings of child's pain according to the SEM scale59
Table 5: Results of Cronbach's alpha reliability coefficient for
inter-examinar reliability62
Table 6: The frequencies, percentages and results of Chi-square test for the
comparison between gender distributions in the three groups
Table 7: The mean, standered deviation (SD) values and results ANOVA
test for the comparison between ages in the three groups
Table 8: The frequencies, percentages and results of Chi-square test for the
comparison between distributions of examined teeth in the three groups 64
Table 9: The mean, standard deviation (SD) values and results of Wilcoxon
signed-rank test for the comparison between VASOF scores with the two
techniques
Table 10: The mean, standard deviation (SD) values and results of
Kruskal-Wallis test for the comparison between VASOF in the three
groups67
Table 11: The mean, standard deviation (SD) values and results of
Wilcoxon signed-rank test for the comparison between VASOF scores
before and after anesthesia in each group69
Table 12: The mean, standard deviation (SD) values and results of
Wilcoxon signed-rank test for the comparison between Frankle Behavior
Scale scores with the two techniques71

Table 13: The mean, standard deviation (SD) values and results of
Kruskal-Wallis test for the comparison between Frankle Behavior Scale in
the three groups
Table 14: The mean, standard deviation (SD) values and results of
Wilcoxon signed-rank test for the comparison between SEM scale scores
with the two techniques
Table 15: The mean, standard deviation (SD) values and results of
Kruskal-Wallis test for the comparison between SEM Scale in the three
groups
Table 16:The frequencies, percentages and results of McNemar's test for
the comparison between incidence of PDP with the two techniques77
Table 17: The frequencies, percentages and results of Chi-square test for
the comparison between incidence of PDP in the three groups78
Table 18: The frequencies, percentages and results of McNemar's test for
the comparison between intake of analgesics with the two techniques 79
Table 19: The frequencies, percentages and results of Chi-square test for
the comparison between intake of analgesics in the three groups 80
Table 20: The frequencies, percentages and results of McNemar's test for
the comparison between lip biting with the two techniques
Table 21: The frequencies, percentages and results of Chi-square test for
the comparison between lip biting in the three groups
Table 22: The fequencies, percentages and results of McNemar's test for
the comparison between buccal blanching with the two techniques 85
Table 23: The frequencies, percentages and results of Chi-square test for
the comparison between buccal blanching in the three groups86

Introduction

ental anxiety and fear preoccupies the mind of many patients during dental procedures.^{1,2}There is a high correlation of adult dental fear and avoidance stemming from childhood experiences.^{3,4}For these patients, one of the disturbing aspects of dental treatment is the anxiety caused by the fear of dental injection.⁵When local anesthesia (LA) is administrated properly, it affords advantages such as child/patient comfort, cooperation, and increase operatory performance.⁶In pediatric dentistry, delivering a relatively painless injection is the key to having cooperative patient and a skill every pediatric dentist should strive to master. Having a cooperative patient can alleviate stress and wasted time.⁷

Despite the skill of operator and the care with which the injection is administered, the pain of the injection and the anxiety that comes with it continue to plague the profession.⁷

The International Association for the Study of Pain (IASP) defines pain as an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in term of such damage. 8It can be conceptualized as a psychological phenomenon having both physiological and psychological component of perception and reaction to it.9

Numerous studies have been conducted in an effort to alleviate the discomfort associated with the injection. Yet, the fact remains that 30-40 million people in the United States continue to be phobic and avoid dental treatment, while 90 percent of all dental patients report being anxious about going to the dentist and receiving an injection. Because of this fact, dentists continue to look for better and more comfortable way to

deliver LA.⁷ Topical anesthesia and increased injection time have been employed with limited results. ¹³ Even though these techniques have helped, they have not eliminated anxiety and fear in patients. Administrating local anesthetic via traditional injection continue to elicit a significant pain response in most dental patient, whether child or adult.⁷

Pediatric dentistry has seen many recent changes in both materials and equipment that have changed our everyday practice. The "Wand" appears to be another tool that we can employ in order to help our patients better accepts dental treatment. 14 In the mid1990s, the "wand" local anesthetic delivery system was introduced into the United States Dental Market Place. 15 The "Wand", a computerized local anesthetic delivery system, has been developed as a possible means of eliminating injection pain. 16 The "Wand" delivers anesthetic at a constant pressure and controlled volume, regardless of the resistance in the tissues. Slow injections can be regulated more precisely by this computerized system than the traditional syringe. ¹⁷ Precise regulation is important because pressure and volume are thought to be directly related to pain. 11 Although dentists have tried to regulate the pressure and volume of anesthetic given by pushing slowly with their thumbs, manual gauging is not perfect. Gauging the pressure and volume of the anesthetic injection is difficult because the amount of resistance and pressure needed varies with each individual. 17

The purpose of this investigationwas to provide a well-controlled empirical evaluation of the effectiveness of theprimary intraligamentary injection administered with computer-controlled local anesthetic delivery system (CCLADS) for reducing the pain and discomfort experienced by children duringlocal injections and dental procedures. Given the proposed ability of the system to provide delivery of anesthesia under constant

pressure and controlled volume, we hypothesized that those children who experienced anesthesia administered by CCLADSwould report less pain, exhibit less pain behavior and report greater satisfaction with treatment, when compared to children who experienced a traditional anesthetic injection method.