

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Adaptive Automated Fault Identification for Enhancing Smart Network Operation

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Prepared by: Eng. Ahmad Ramadan Adly

M.Sc. in Electrical Power Engineering
Department of Electrical Power and Machines
Cairo University

Under Supervision of:

Prof. Dr. Almoataz Youssef AbdelazizFaculty of Engineering Ain Shams University

Associate Prof. Dr. Ragab Abdelaziz El Sehiemy
Faculty of Engineering Kafrelsheikh University

Prof. Dr. Nabil Mohamed Abdel Fattah Ayad
Reactors Dept., Nuclear Research Center, Atomic Energy Authority
Cairo – Egypt 2016

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Adaptive Automated Fault Identification for Enhancing Smart Network Operation

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Prepared by:

Eng. Ahmad Ramadan Adly

M.Sc. in Electrical Power Engineering Department of Electrical Power and Machines Cairo University

Supervision Committee

Title, Name and Affiliation

Prof. Dr. Almoataz Youssef Abdelaziz Electrical Power & Machines Department Faculty of Engineering, Ain Shams University

Associate Prof. Dr. Ragab Abdelaziz El Sehiemy

Electrical Engineering Department Faculty of Engineering, Kafrelsheikh University

Prof. Dr. Nabil Mohamed Abdel Fattah Ayad Nuclear Research Center, Atomic Energy — Authority Signature

A.Y. Abdelaziz

N.M.A.Ayad

Data: 26/11/2016

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Adaptive Automated Fault Identification for Enhancing Smart Network Operation

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Prepared by:

Eng. Ahmad Ramadan Adly

M.Sc. in Electrical Power Engineering Department of Electrical Power and Machines - Cairo University

Examination Committee

Title, Name and Affiliation

Prof. Dr. Mazen Mohamed Shafiq Abdel-Salam

Electrical Engineering Department Faculty of Engineering, Assiut University

Prof. Dr. Solaiman Mohamed Aldbeiky Electrical Power & Machines Department Faculty of Engineering, Ain Shams University

Prof. Dr. Almoataz Youssef Abdelaziz Electrical Power & Machines Department Faculty of Engineering, Ain Shams University

Associate Prof. Dr. Ragab Abdelaziz El Sehiemy

Electrical Engineering Department Faculty of Engineering, Kafrelsheikh University

Abdel- falam

A. Y. Abdelazia

Data: 26/11/2016

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirement for the Ph.D. degree in Electrical Engineering. The included work in this thesis has been carried out by the author at the Electrical Power and Machine Department, Ain-Shams University. No Part of this thesis has been submitted for a degree or a qualification at other university or institute.

Name: Ahmed Ramadan Adly

Signature: Ahmed Ramadan Adly

Date: 26 /11/2016

ACKNOWLEDGMENT

Thanks to ALLAH who gives us the power and hope to succeed.

Thanks must go to Allah the creator of this universe who ordered us to study and explore his creations in order to know him better. However, as I come to understand more, I find that there is so much more knowledge to absorb and to get to grips.

I would like to thank my supervisor, **Prof. Dr. Almoataz Youssef Abdelaziz**, for his encouragement, helpful advice and the time he offered me during his period of supervision.

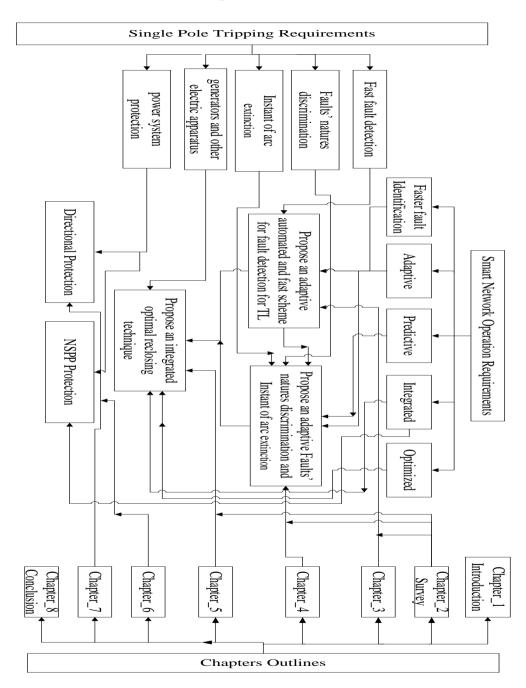
I would like deeply to express my thanks and gratitude to my supervisor, **Dr. Ragab Abdelaziz El-Sehiemy**, for his faithful supervision and his great patience during the research period.

Also, I would like to thank my supervisor, **Prof. Dr. Nabil Mohamed Abdel Fattah Ayad**, for his encouragement, help, support and advice during his period of supervision.

Finally, there are no enough words to thank **my father**, **mother**, **my wife**, **daughter**, **brothers** and **sister** for their continuous support and encouragement during the research period. I pray to ALLAH to bestow on **my father** with great mercies and let him enter Paradise peacefully.

ABSTRACT

A smart grid is a sophisticated electricity distribution and transmission grid that utilizes communication, information, and management technologies to boost economy, security, stability, reliability, and efficiency of the grid. Recently, one of the most important schemes that were developed to improve transient stability is the single pole tripping scheme. In this scheme, the faulted phase will be trip during single phase to ground fault while the phases are trip on a multi-phase (three phase and double phase) faults. The transmitted power can be still transferred across the healthy phases that remain in service during signal pole tripping. Several issues are necessary to be considered when applying single pole tripping schemes. These issues include: directional relay, negative sequence pilot protection, faulted phase selection. automatic reclosing considerations. unbalanced voltages, unbalanced currents and transient stability.


This thesis is conducted in three parts. In the first part, three adaptive automated schemes are developed to improve the fault identification process in transmission line. The first scheme has investigated an automated and sensitive fault identification scheme. The developed scheme distinguishes between a low impedance fault (LIF) and a high impedance fault (HIF) based on current signal only. This scheme is depends on an adaptive threshold, to alleviate the issue associated with load variations. The second scheme combines the merits of discrete wavelet transform (DWT) and Karen Bell transformation (KBT) for the fault analysis process. This scheme is does not depend on the threshold value and it leads to fast detection. Critical issues like a variation in fault inception angle, fault location, fault resistance and source capacity change are investigated using the proposed scheme. This scheme detects and classifies the fault using only 8 samples from the power cycle with the mean fault detection duration is 1.25 ms. The third scheme presents a simple technique for adaptive single pole automatic reclosure (ASPAR) for transmission lines using wavelet packet transform (WPT). The ASPAR aims to discriminate the faults' natures and to detect the instant of arc extinction. The proposed scheme uses an adaptive threshold level. The proposed scheme is tested for different network configurations, single and double circuits, to realize it is robustness and capability. Also, the proposed scheme discriminates correctly between permanent and transient faults for compensated and uncompensated networks.

The second part of this thesis aims to integrate the reclosing scheme in terms of real-time communications. It combines the merits of adaptive reclosing time (ART) scheme and the optimal reclosing time (ORT) scheme to improve the transient stability problem. The ART distinguishes the faults, and detects the instant of arc extinction of a transient fault. The ORT is dependent on the load angle of the synchronous generators. The performance of the integrated reclosing scheme is assessed compared with the conventional reclosing schemes in terms of voltage and speed indices. The simulation results indicate that the developed reclosing scheme of circuit breakers can enhance the transient stability.

The third part of this thesis addresses the protection relaying during single pole tripping schemes for a transmission system. It studies the negative sequence pilot protection (NSPP) and directional protection relays for faults during the single pole tripping condition. Then, negative and positive sequence superimposed schemes are developed to provide a solution for the problems of NSPP and directional protection, respectively. These schemes are able to correctly work during single pole tripping (SPT) with different situations, including different fault types, high fault resistances, fault locations, change in source capacity, cross country and far end faults for double circuit line.

Numerical studies show that the proposed schemes are simple, accurate and can be used for updating, improving, and refurbishing of the existing protection relays.

Graphical Abstract

Table of Contents

Acknowledgment	
Abstract	
Graphical Abstract	iv
Table of Contents	V
List of Figures	xii
List of Tables	xvii
List of Symbols and Abbreviations	xix
CHAPTER (1) INTRODUCTION	1
1.1 Smart Grids	1
1.1.1 Definition	1
1.1.2 Infrastructure	2
1.2 Problem Statement	3
1.3 Thesis Objectives	7
1.4 Thesis Contribution	
1.5 Thesis Outlines	8
CHAPTER (2): LITERATURE REVIEW ON FAULT IDENTIFICATION FOR TRANSMISSION LINES	10
2.1 Introduction	10
2.2 Fault Identification	11

	2.2.1	Conventional methods	12
	2.2.2	Intelligent methods	13
	2.2.3	Travelling wave method	14
	2.2.4	Wavelet transforms Methods	14
		2.2.4.1 Wavelet transform without classifier	14
		2.2.4.2 Wavelet transform in conjunction with probabilistic classifier	16
		2.2.4.3 Wavelet transform with traveling wave	16
		2.2.4.4 Wavelet transform in conjunction with AI/fuzzy/expert systems	17
2.3	Wavel	et Transform Challenges	18
	2.3.1	Classification based on high frequency component	s 18
	2.3.2	Classification based on low frequency components	18
	2.3.3	Behavior under load variation	18
	2.3.4	Problems of huge samples and training	18
2.4	Differen	nt ASPAR Techniques	19
	2.3.1	Based on various fault voltage magnitude and angl measurements	e 21
	2.3.2	Based on the comparison of voltage symmetrical components	21
	2.3.3	Based on high frequency transient	22
	2.3.4	Based on intelligent Classifier	23
2.5	ASPAR (Challenges	23
2.6 Optimal Reclosing Technique		26	
	2.4.1 Load angle based method		27
		inetic energy based method	27
	IX	mene energy outled mented	

Contents	
2.4.3 Transient energy based method	28
2.5 Conclusion	29
CHAPTER (3) ADAPTIVE FAULT IDENTIFICATION SCHEMES FOR TRANSMISSION LINES	30
3.1 Preface	30
3.2 Description of the First Proposed Scheme	30
3.3. Description of the Second Proposed Scheme	34
3.3.1 Karen Bell Transformation	34
3.3.2 Fault characterization	35
3.3.3 Fault identification scheme	35
3.4 Simulation Results	42
3.4.1 Test system	42
3.4.2 Studied cases	43
3.4.3 Results for the first proposed scheme	44
3.4.3.1 Effect of fault types situations	44
3.4.3.2 Distinguishing between high impedance faults (HIFs) and low impedance fault (LIF)	47
3.4.3.3 Adaptive setting of threshold	48
3.4.4. Results for the second proposed scheme	50
3.4.4.1 Analysis of the proposed modal indices	50
3.4.4.2 Results of different fault conditions	53
3.4 Assessment of the Proposed Scheme	59
3.5 Conclusion	61

CHAPTER	(4)	
FAULT TYI SCHEME	PE RECOGNITION AND ARC EXTINCTION	62
4.1 Preface		62
4.2 Propose	d Procedure for ASPAR Scheme	62
4.3 Simulation	on Tests	65
4.3.1	Test systems	65
4.3.2	Studied cases	67
4.4 Analysis	of Permanent & Transient Faults	68
4.4.1	Uncompensated transmission line	68
4.4.2	Shunt compensated transmission line	71
4.5 Results fo	or ASPAR Scheme	71
4.5.1	Single circuit line	71
	4.5.1.1 Uncompensated transmission line	74
	4.5.1.2 Shunt compensated transmission line	77
4.5.2	Responses for critical situations	79
4.6 Compari	son with Existing Schemes	84
4.7 Conclusi	on	87
a	(-)	
CHAPTER ADAPTIVE	(5) INTEGRATED RECLOSURE METHOD	88
5.1 Preface		88
5.2 Integrate	ed Reclosing Method	89
5.3 Simulati	ion Studies	91

\sim			
Co	nte	n	1.5

	ingle machine connected to infinite bus equivalent SIME)	91
`	Iulti-machine system	93
5.4 Testing l	Proposed Method	95
5.4.1	Results for SIME system	95
5.4.2 R	esults for multi-machine system	99
5.5 Conclusi	on	107
CHAPTER DIRECTIO TRIPPING	(6) NAL PROTECTION DURING SINGLE POLE	108
6.1 Preface		108
6.2 Introduc	etion	108
	nalysis Using Symmetrical Component Under Single pping (SPT) Condition	109
6.3.1	Positive sequence current during SPT without fault	109
6.3.2	Positive sequence current during SPT with fault	112
6.4 Require	ments for Directional Relay Operations During SPT	113
6.5 Descript	ion of Proposed Directional Protection Scheme	114
6.6 Simulati	on Results	116
6.6.1	Test systems	116
6.6.2	Cases studied	117
6.6.3	Results and discussion	118
	6.6.1.1 Results of single circuit line	118
	6.6.1.2 Results of double circuit line	121
	6.6.1.3 Results of critical issues	125

Con	iciis		120
6.7	Assessme	ent of the Proposed Directional Protection Scheme	128
6.8	Conclusi	on	129
NE SIN		(7) SEQUENCE PILOT PROTECTION DURING LE TRIPPING	131 131
	Introduc	tion	131
	Operatio Relay	n Criterion of Negative sequence pilot protection	132
7.4	Descripti	on of the Proposed Scheme	134
	7.4.1	Analysis of the proposed scheme	134
	7.4.2	Schematic block diagram	136
7.5	Simulat	ion Results	137
	7.5.1	Test systems	137
	7.5.2	Studied cases	138
	7.5.3	Results and discussion	139
		7.5.3.1 Results of single circuit line	139
		7.5.3.2 Results of double circuit line	144
		7.5.3.3 Results for critical issues	152
7.6	Assessm	nent of the Proposed Scheme	156
7.7	Conclus	sion	158
	APTER		159
	NCLUSI Conclusi	ONS AND SUGGESTIONS FOR FUTURE WORK	159
0.1	Conclusi	nii2	

8.2 Suggestions for Future Work	
REFERENCES	161
APPENDIX A Discrete Wavelet Transform	179
APPENDIX B Wavelet Packet Transform	181