

Ain Shams University Faculty of Education Physics Department

"Multi-particle Production at High Energy Collisions"

Thesis

Submitted for the Degree of Doctorate of Teacher's Preparation in Science (Physics).

By

Ehab Gamal Abbas Mitwaly AbdelHady

B.Sc. and Education, Gen. Diploma (Physics), Spec. Diploma (Physics) and M.Sc. (Physics).

Supervised By

Prof. Dr. Mahmoud Yasin El Bakry

Prof. of Theoretical Physics Faculty of Education Ain Shams University

Dr. Mohamed Tantawy Mohamed

Lect. of Theoretical Physics Faculty of Education Ain Shams University

Dr. Doaa Mahmoud Habashy

Lect. of Theoretical Physics Faculty of Education Ain Shams University

To

Physics Department - Faculty of Education Ain Shams University

2017

Approval

Title: "Multi-particle Production at High Energy Collisions"

Candidate: Ehab Gamal Abbas Mitwaly AbdelHady

Degree of Doctorate of Teacher's Preparation in Science (Physics)

Board of Advisors

Approved by Signature

1. Prof. Dr. / M. Y. El-Bakry

Approved

Physics Department, Faculty of Education, Ain Shams University.

2. Dr. / M.T. Mohamed

Physics Department, Faculty of Education, Ain Shams University.

3. Dr. / D. M. Habashy

Physics Department, Faculty of Sciences, Ain Shams University.

Date of presentation: / / 2016

Post graduate studies:

Stamp:

Date of approval: / / 2017

Approval of Faculty Council: / / 2017

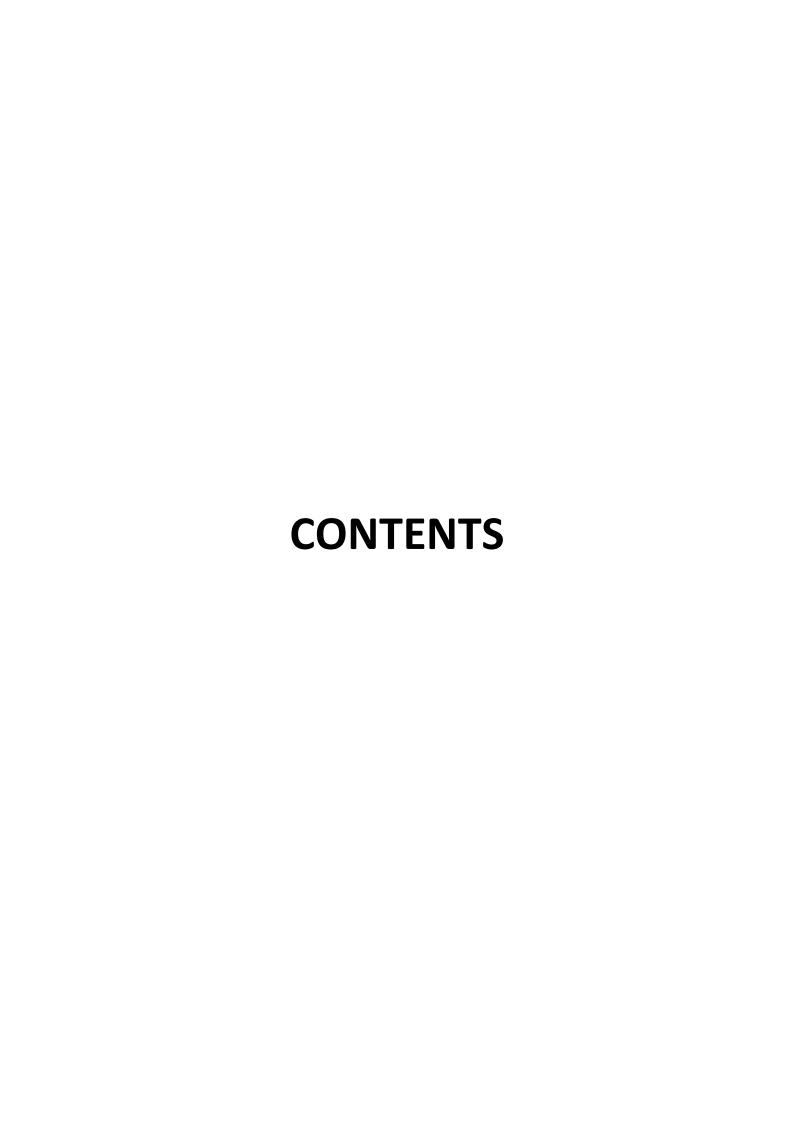
Approval of University Council: / / 2017

ACKNOWLEDGEMENT

Before all and above all, many thanks to Allah, the lord of all being.

The author wishes to express his sincere gratitude to **Prof**. **Dr.**/ *M. Y. El Bakry*, Head of Physics Department, Faculty of Education, Ain Shams University.

The author indebted with his utmost thanks to **Prof. Dr.**/ *M. Y. El Bakry, Head of Theoretical High Energy Physics Group* for continuous supervision, valuable suggestions, encouragement and fruitful advice through this work.


Deepest gratitude to **Dr.** / **M. T. Mohamed** for his advice, valuable help and encouragement during this study and successful advice throughout this work.

The author wishes to thank **Dr.** / **D. M. Habashy** for his valuable help, support and productive guidance during this work.

The author wishes to thank **Dr. / Moaaz Moussa** for his valuable discussion, comments and encouragement during this work.

Finally, the assistance of the staff members and colleagues of theoretical high energy physics group (Mrs. Reham Abdel-Rohman, Ms. Enas Farouk, and Ms. Shaimaa Farouk) are highly appreciated.

Contents

List of Figures	i
List of Tables	viii
Abbreviations	ix
Abstract	x
Summary	xi
Introduction	.xiii
Chapter 1: Basic Features of High Energy Collisions	
1-1-Introduction.	1
1-2-Strong Interaction.	2
1-3-Standard Model.	3
1-4- High Energy Physics Experiments.	6
1-5-Quark Gluon Plasma (QGP).	9
1-5-1-The Main Features of Quantum Chromodynamics	
(QCD).	9
1-5-1-New State of Matter.	11
1-6-Hadrons	12
1-7-QCD Phase Transitions.	13
1-7-1-Types of Phase Transitions.	15
1-7-2-QCD Phase Diagram.	17
1-8- System Evolution.	19
1-9- Experimental data for QGP Signals.	23
1-9-1-Strangeness Enhancement.	24
1-9-2- Direct Photons.	27
1-9-3- j/ψ Suppression.	28
1-9-4- Jet Quenching.	30
1-10- Kinematic Variables.	32
Chapter 2: Review of Theoretical Models.	
2-1-Introduction.	35

2-2- Massachusetts Institute of Technology (MIT) Model.	35
2-3-String Model.	38
2-4- Parton Cascade Model.	39
2-5-Color Glass Condensate Model.	40
2-6-Simulation Models for Event Generators.	41
2-6-1-PYTHIA.	41
2-6-2-HIJING.	42
2-6-3-UrQMD.	42
2-7- Lattice QCD.	44
2-8- Hydrodynamic Model.	46
2-9-Statistical Models.	50
2-9-1- History.	50
2-9-2-Thermodynamics of QGP.	54
Chapter 3: Hadron Resonance Gas (HRG) Model	
3-1- Introduction.	58
3-2- Hadronization.	59
3-3- Basics of HRG model.	61
3-3-1- Phase Space Dominance.	61
3-3-2- The Interaction Between Particles.	63
3-3-2-i-Repulsive Force.	63
3-3-2-ii-Attractive Force.	63
3-3-3-Conservation laws.	65
3-4- Main Framework.	66
3-4-1-Thermodynamics of Multi-Particle System.	67
3-4-2 Chemical Potentials.	69
3-4-3-Resonance Decay.	71
3-4-3-i-Strong Decay.	71
3-4-3-ii-Weak Decay.	74
3-5- Details of HRG Model.	75
3-5-1-Degree of non-Chemical equilibrium.	76
3-5-2-Hadrons Excluded Volume Correction.	78

 3-5-3-System Size of Fireball. 3-5-4- Hadron mass spectra and Hagedorn states 3-5-5-Particle Decay Width. 3-6-Model Versions (SHARE,THERMUS and THERMINATOR). 3-6-1-Our Version. 	80 83 85 86 88
Chapter 4: HRG Calculations of Particle Ratios for Au-Au Collisions	
4-1-Introduction.	89
4-2- Experimental data for particle ratios for Au-Au at	03
different Energies.	89
4-3- Full Chemical equilibrium case in the framework of	
HRG model.	91
4-3-1-Effects of Excluded-Volume Correction(EVC)	96
4-3-2-Effects of Including New Resonances	97
4-3-3-Energy Dependence of the Freeze-out Parameters.	98
4-3-4-Centrality dependence of chemical freeze-out	
parameters.	100
4-3-5-Comparing Results with Other versions of HRG	
Model.	103
4-4- Partial Chemical equilibrium case using of HRG model.	104
4-4-1 Extracting The Chemical Freeze-out Parameters.	104
4-5- Comparison between Full and Partial Chemical	
equilibrium case.	108
4-6- Freeze-out insights from Ω/π^- and φ/π^- ratios.	113
Chapter 5: Theoretical study of Chemical Freeze-out Condition	ions
using HRG Model	
5-1- Introduction.	117
5-2-Stability and Validity of Chemical Freeze-out Conditions.	118
5-2-1-Average Energy per Particle Produced.	119
5-2-2-Baryon and antibaryon Particle Density.	121

5-2-3-Fireball Normalized Entropy Density.	123
5-2-4-Entropy per Particle Produced.	126
5-2-5-Fireball Trace Anomaly.	128
5-3-Theoretical Interrelations Among Chemical Freeze-out	
Conditions.	131
Conclusions	135
List of Publications	140
References	141
Arabic summary	

List of Figures

Fig.(1.1):	ALICE experiment ^[25] .	8
Fig.(1.2):	Left Panel; summary of measurements of α_s as a	
	function of the respective energy scale Q along with	
	QCD perturbation theory ^[30] . Right Panel; The quark-	
	quark potential as a function of the distance between	
	the quarks calculated from lattice QCD where a denotes	
	the lattice constant. The points show Monte Carlo (MC)	
	data, and the corresponding fit ^[31] .	10
Fig.(1.3):	Normalized energy density ($arepsilon/T^4$) as a function of the	
	ratio between temperature and critical temperature,	
	T/T _c . The Stefan-Boltzmann limit is indicated by arrows	14
	for each of the three combinations of quark flavours	14
	considered ^[43] .	
	A schematic QCD phase diagram ^[46] .	18
Fig.(1.5):	Schematic representation of the various stages of a	19
F:- /1 C\.	heavy-ion collision ^[52] .	19
rig.(1.0):	Left: Two heavy ions before collision with impact parameter b. Right: The spectator nucleons remain	
	unaffected while particle production takes place in the	
	participants zone ^[53] .	20
Fig.(1.7):	A lightcone diagram of a collision for a case (a) without a	
8.(=., /.	QGP and (b) with a QGP where horizontal axis	
	represents the time and vertical axis represents the	
	beam direction. T_{fo} is an abbreviation for thermal and	
	T_{ch} for chemical freeze-out. Hadronization starts at T_{c} ,	22
	the critical temperature ^[57] .	23
Fig.(1.8):	Strangeness enhancements in Pb-Pb collisions at E_{lab} =	
	160 GeV compared to p-Be and p-Pb seen at WA97	
	(closed symbols) and NA57 (open symbols) as a function	
	of the number of wounded nucleons ^[62] .	26
Fig.(1.9):	Strangeness enhancements in the rapidity range $ y <$	
	0.5 as a function of the mean number of participants	
	$<$ N _{part} $>$, showing ALICE ^[63] (full symbols) at $\sqrt{s_{NN}}$ =2.76	
	TeV, RHIC and SPS (open symbols) data ^[64] . The line	