

Faculty of Science Ain Shams University

Physiological and Phytochemical Studies on Kaff Maryum (Anastatica hierochuntica L.) Plant

ATHESIS

Submitted for the degree of Master of Science as a Partial Fulfillment for requirements of the Master of Science Botany (Plant Physiology)

By

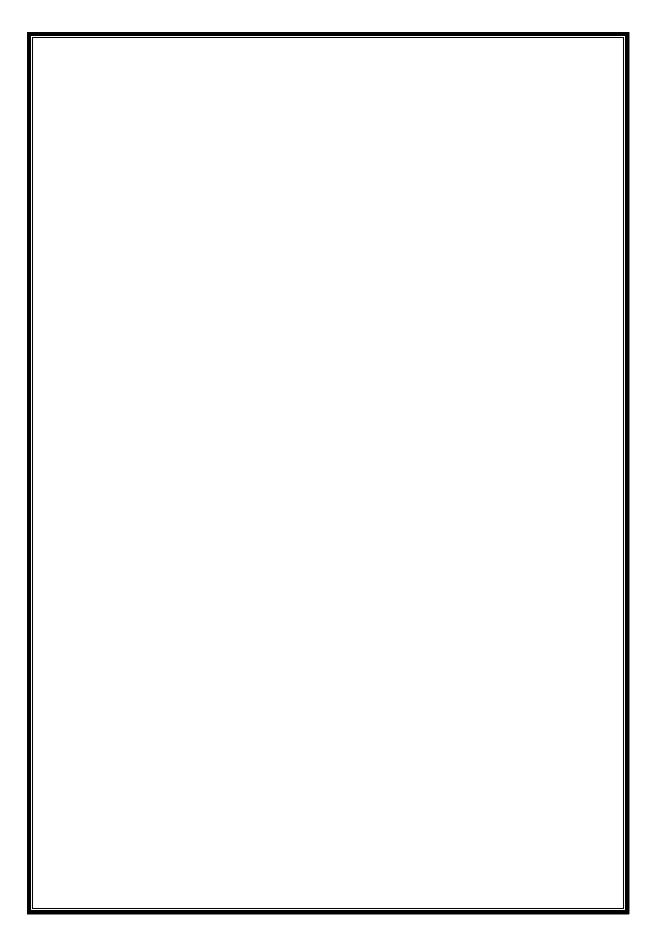
Walaa Soliman Madboly

B. Sc. In Science (Botany-Chemistry) (2005)

Under The Supervision of

Prof. Dr. Raifa Ahmed Hassanin Prof. Dr. Sahar Ahmed El-Khawas

Professor of Plant Physiology Botany Department Faculty of Science Ain Shams University Professor of Plant Physiology Botany Department Faculty of Science Ain Shams University


Dr. Mona Mohamed Marzouk

Associate Professor
Phytochemistry and Plant Systematics Department
National Research Centre

Presented to

Department of Botany Faculty of Science Ain Shams University

2016

Faculty of Science Ain Shams University

M. Sc. Thesis

Title of Thesis: Physiological and Phytochemical Studies on

Kaff Maryum (Anastatica hierochuntica L.) Plant

Name :Walaa Soliman Madboly Soliman.

Degree : Master of Science (Botany, Physiology)

Thesis Supervisors:

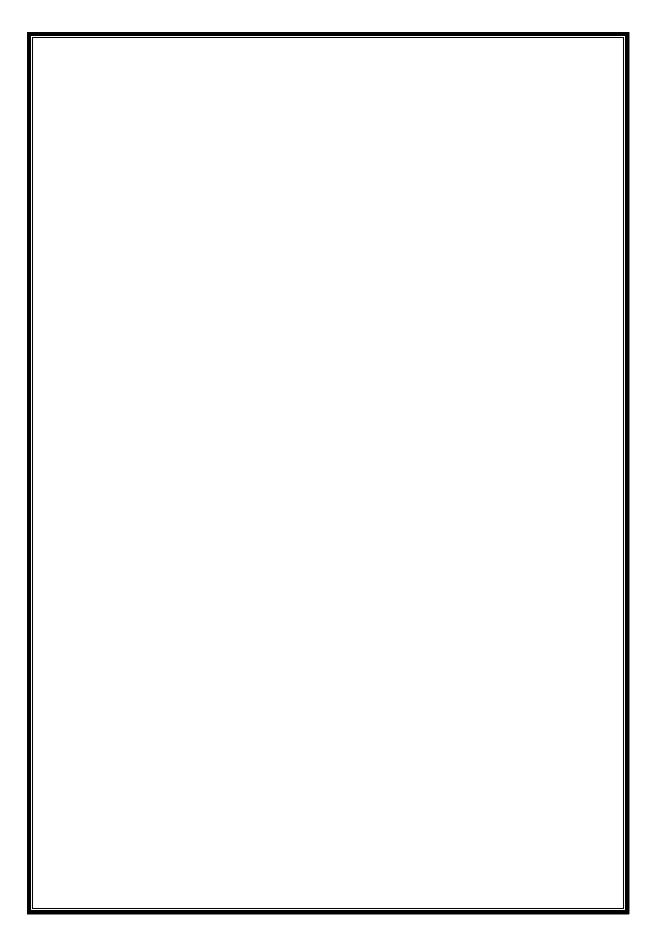
Prof. Dr. Raifa Ahmed Hassanin

Professor of Plant Physiology, Botany Department,

Faculty of Science, Ain Shams University.

Prof. Dr. Sahar Ahmed El-Khawas

Professor of Plant Physiology, Botany Department,


Faculty of Science, Ain Shams University.

Dr. Mona Mohamed Marzouk

Associate Professor Researcher

Phytochemistry and Plant Systematic Department,

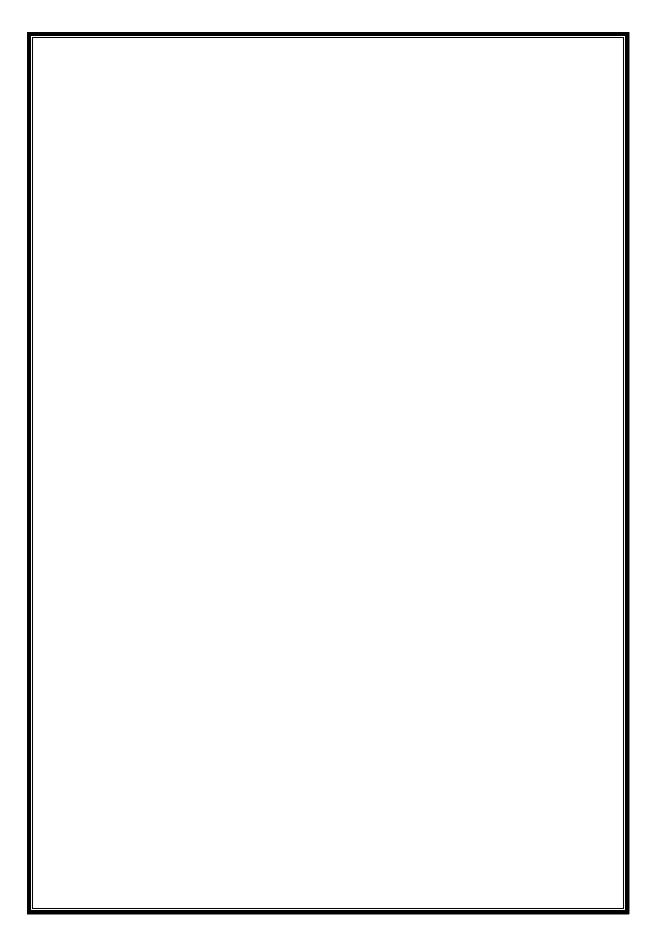
National Research Centre.

Physiological and Phytochemical Studies on Kaff Maryum (Anastatica hierochuntica L.) Plant

ATHESIS

Submitted for the degree of Master of Science as a Partial Fulfillment for requirements of the Master of Science

Botany (Plant Physiology)


By

Walaa Soliman Madboly

B. Sc. In Science (Botany-Chemistry)
(2005)
Botany Department
Cairo University

Presented to

Department of Botany Faculty of Science Ain Shams University 2016

Acknowledgment

All thanks to **Allah** by whose grace this work had been completed and by his grace all my life is arranged in the best.

I would like to express my deepest appreciation to all those who provided me the possibility to complete this master. A special gratitude I give to **Prof. Dr. Raifa Ahmed Hassanin**, Professor of Plant physiology, Department of Botany, Faculty of Science, Ain Shams University, for useful comments, remarks and engagement through the learning process of this master thesis, constant supervision as well as for providing necessary information regarding the point, she is not only a great Professor with deep vision but also the most importantly a kind person.

Furthermore I would like to thank **Prof. Dr. Sahar Ahmed El Khawas**, Professor of Plant physiology, Department of Botany, Faculty of Science, Ain Shams University, for introducing me to the topic as well for the support on the way, I am grateful for their constant support and help. it was great pleasure to do this thesis under her supervision.

Also, I would like to thank **Dr. Mona Mohamed Marzok**, doctor of chemistry of natural products and chemosystematic, Phytochemistry and Plant Systematics Department National Research Centre. For continuous encouragement, and full support in every thing, She could not even realize how much I have learnt from her.

I wish to offer my appreciation to **Prof. Dr. Maher Mohamed Shehata**, Head of Botany Department and the staff of Botany Department, Faculty of Science, Ain Shams University.

I am most obliged to **my parents, and my sisters,** for their pray to Allah for me, their full support, sincere love and continuous encouragement.

Walaa Soliman Madboly

Abstract

Title of the thesis: Physiological and phytochemical studies on kaff m maryum (*Anastatica hierochuntica* L.) plant

Degree: Master in botany (plant physiology)

Name of the student :Walaa Soliman Madboly

In present work the effect of red sea water ,mannitol and their interaction on kaff maryum plant was studied .The study included two parts ;the first was the physiological results and the second the phytochemical results.

The physiological results

The percentage of germination and shoot length were reduced while the root length, fresh weight, number of branches and leaves and leave area were mostly increased in response to salinity especially at the low concentration. Soluble sugars were at high level in the low concentration while the high concentration accumulated polysaccharide. The antioxidant compounds showed high levels in most treatments. Also the antioxidant activity increased by increasing the total phenolics and flavonoid contents. There are some qualitative changes in the protein profile

which included the disappearance and appearance of *de novo* synthysized bands.

The phytochemical results

Five Compounds were isolated for the first time from *A. hierochuntica*. The extracts of control C, include flavonoids (1-12) and the five treatments (S1, S2, M, MS1 and MS2) were subjected to HPLC analysis as well as CO-PC with authentic samples using two dimension paper chromatography (2D-PC). Twelve flavonoid compounds were isolated and identified from the control extract of *A. hierochuntica* (vegetative stage).

Keywords: *Anastatica hierochuntica* – Salinity – Antioxidant – Physiological - Phytochemical

LIST OF CONTENTS		
TITLE	PAGE	
I. Introduction	1-4	
II. Literature review	5-18	
III. Material and Methods	19-54	
Physiological Analysis	21-33	
Estimation of photosynthetic pigments	21	
Estimation of carbohydrates	22	
Extraction and Estimation of proline	23	
Estimation of anthocyanin contents	24	
Extraction and Estimation of vitamin E (α -Tocopherols)	25	
Extraction and estimation of total phenolics, total flavonoids and antioxidant activities	25	
Estimation of total phenolics	26	
Estimation of total flavonoids	27	
Estimation of antioxidant	27	
Estimation of protein electrophoresis	28-33	
Phytochemical analysis	34-41	
Chemical Analysis	42-44	
Physical Analysis	44-45	
Nuclear magnetic resonance spectroscopy (NMR)	46-51	
IV. Results	55-111	
V. Discussion	112-148	
Summary	149-155	
References	156-189	
Arabic summary	1-5	

LIST OF TABLES		
TABLE	TITLE	PAGE
1	Seawater analysis. Each sample is a mean of	19
	three samples.	
2	Solvent systems used for paper	37
	chromatography investigation.	
3	Approximate chemical shift of various	48
	flavonoid proton types.	
4	Relevant shift data for the effect of the new	50
	substituents at C-1, ortho-, meta-and para-	
	positions ($\Delta\delta$ in ppm).	
5	Effect of seawater, mannitol and their	56
	interaction on percentages of germination of	
	Anastatica hierochuntica L. plant after seven	
	days of germination.	
6	Effect of seawater, mannitol and their	59
	interaction on (shoot and root lengths) of	
	Anastatica hierochuntica L. plant at vegetative	
	stage.	
7	Effect of seawater, mannitol and their	61
	interaction on (shoot root ratio) of Anastatica	
	hierochuntica L. plant at vegetative stage.	
8	Effect of seawater, mannitol and their	62
	interaction on (fresh and dry) weights of	
	Anastatica hierochuntica L. plant at vegetative	
	stage.	
9	Effect of seawater, mannitol and their	65
	interaction number of (branches and leaves/	
	plant, and leaf area index) of Anastatica	
4.6	hierochuntica L. plant at vegetative stage.	
10	Effect of seawater, mannitol and their	69
	interaction on (shoot and root lengths) of	
	Anastatica hierochuntica L. plant at yield stage.	

11	Effect of seawater, mannitol and their interaction on (fresh and dry weights) of <i>Anastatica hierochuntica</i> L. plant at yield stage.	71
12	Effect of mannitol, seawater and their interaction on (number of branches and number of fruits / plant) of <i>Anastatica hierochuntica</i> L. plant at yield stage.	73
13	Effect of mannitol, seawater and their interaction on chlorophyll a, chlorophyll b and carotenoids of <i>Anastatica hierochuntica</i> L. plant at vegetative stage.	76
14	Effect of mannitol, seawater and their interaction on soluble sugars, polysaccharides and total carbohydrates of <i>Anastatica hierochuntica</i> L. plant at the vegetative stage.	80
15	Effect of seawater, mannitol and their interaction on antioxidant compounds (proline and anthocyanins; mg/100g d.wt) and vitamin E (tocopherol; (μg/100g d.wt) of <i>Anastatica hierochuntica</i> L. plant at vegetative stage.	84
16	Effect of seawater and mannitol and their interaction total phenol of vegetative and yield stages of <i>Anastatica hierochuntica</i> .	87
17	Effect of seawater mannitol and their interaction on total flavonoid, of vegetative and yield stages of Anastatica <i>hierochuntica</i> .	89
18	Effect of seawater and mannitol and their interaction, on antioxidant activity DPPH % vegetative and yield stages of Anastatica hierochuntica.	91

19	Effect of mannitol, seawater and their	93
	interaction on protein of Anastatica	
	hierochuntica plant at vegetative stage.	
20	HPLC analysis of flavonoid compounds from	96
	AME of Anastatica heriochuntica L. at the	
	vegetative stage.	
21	Flavonoid compounds isolated from the	97
	control extract of Anastatica hierochuntica at	
	vegetative stage.	
22	Data obtained for compound (1).	98
23	Data obtained for compound (2).	99
24	Data obtained for compound (3).	100
25	Data obtained for compound (4).	101
26	Data obtained for compound (5).	102
27	Data obtained for compound (6).	103
28	¹ H and ¹³ C -NMR spectral data of compound	104
	(6).	
29	Data obtained for compound (7).	105
30	Data obtained for compound (8).	106
31	Data obtained for compound (9).	107
32	Data obtained for compound (10).	108
33	Data obtained for compound (11).	109
34	Data obtained for compound (12).	110

LIST OF FIGURES		
FIGURE	TITLE	PAGE
1	Basic flavonoid skeleton	17
2	Various classes of flavonoids.	18
3	Effect of seawater, mannitol and their	57
	interaction on percentages of germination	
	of Anastatica hierochuntica L. plant after	
	seven days of germination.	
4	Effect of seawater, mannitol and their	60
	interaction on (shoot and root lengths) of	
	Anastatica hierochuntica L. at the	
	vegetative stage.	
5	Effect of seawater, mannitol and their	63
	interaction on (fresh and dry weights) of	
	Anastatica hierochuntica L. at the	
	vegetative stage.	
6	Effect of seawater, mannitol and their	66
	interaction on (the number of branches /	
	plant) of <i>Anastatica hierochuntica</i> L. at	
	the vegetative stage.	
7	Effect of seawater, mannitol and their	67
	interaction on (the number of leaves and	
	area of leaves / plant) of Anastatica	
	hierochuntica L. at the vegetative stage.	_
8	Effect of seawater, mannitol and their	70
	interaction on (the shoot and root length)	
	of Anastatica hierochuntica L. at the yield	
	stage.	7.2
9	Effect of seawater, mannitol and their	72
	interaction on (the fresh and dry weight)	
	of <i>Anastatica hierochuntica</i> L. at the yield	
	stage.	

10	Effect of seawater, mannitol and their interaction on (the number of branches and number of fruits / plant) of <i>Anastatica</i>	74
	hierochuntica. at the yield stage.	
11	Effect of seawater, mannitol and their interaction on chlorophyll a, chlorophyll b and carotenoids of <i>Anastatica hierochuntica</i> . at the yield stage.	77-78
12	· ·	82
12	Effect of seawater, mannitol and their interaction on soluble sugars, polysaccharides and total carbohydrates of <i>Anastatica hierochuntica</i> . at the yield stage.	82
13	Effect of seawater, mannitol and their interaction on proline of <i>Anastatica hierochuntica</i> . at the vegetative stage.	85
14	Effect of seawater, mannitol and their interaction on anthocyanins of <i>Anastatica hierochuntica</i> . at the vegetative stage.	85
15	Effect of seawater, mannitol and their interaction on vitamin E of <i>Anastatica hierochuntica</i> . at the vegetative stage.	86
16	Effect of seawater, mannitol and their interaction on total phenolics of <i>Anastatica hierochuntica</i> L. at the vegetative and yield stages.	88
17	Effect of seawater, mannitol and their interaction on total flavonoids of <i>Anastatica hierochuntica</i> L. at the vegetative and yield stages.	90
18	Effect of seawater, mannitol and their interaction on antioxidant activity DPPH% of <i>Anastatica hierochuntica</i> . at the vegetative and yield stages.	92