Influence of Tooth Surface Roughness and Cement Formulation on Retention of Cast Crowns

Thesis

Submitted in partial fulfillment of requirement for master degree in crown and bridge fixed prosthodontics

By

Abdel-Moteleb Amara El-Darwish

(B.D.S.)

Faculty of Dentistry, Garunise University, Benghazi
The Libyan Arab Republic Of Great El Jamahiriya
1982

Faculty of Dentistry Ain-Shams University

2006 - 2007

Supervisors

Dr. Amina Mohammed Hamdy

Assistant Professor of Fixed Prosthodontics Faculty of Dentistry - Ain Shams University

Dr. Jehan Farouk

Lecturer of Fixed Prosthodontics

Faculty of Dentistry – Ain Shams University

To the Spirit of My Father My Great Mother My Dear Wife And My Lovely Son and Daughters

ACKNOWLEDGEMENT

I am deeply offer my cordial thanks to Dr. Amina Hamdy, Assistant Professor and Head of fixed prosthodontics, Faculty of Dentistry, Ain-Shams University, for her endless efforts, valuable assistance and moral support during the entire course of this work.

My sincere thanks are also extended to Dr. Jehan Farouk, Lecturer of fixed prosthodontics, Faculty of Dentistry, Ain-Shams University, for her spiritual encouragement, sincere co-operation and valuable advices during this work.

I am also indebted to Dr. Adel Mohammed Abdel-Azim Professor of Oral Pathology Ain Shams University for his useful guidance and effort he devoted for statistical analysis.

I am also indebted to Dr. Iman Mohammed Helmy Lecturer of Oral Pathology Ain Shams University for her guidance and effort he devoted during the preparation of this work.

I would also thank all the members of Conservative Dentistry Department, Faculty of Dentistry, Ain-Shams University for their help and guidance during the preparation of this study.

Finally, I would like to express my deep appreciation to all those who gave me a hand during the entire course of this work.

Table of Contents

List of Tables	iii
List of Figures and graphs	iv
Introduction	1
Review of Literature	5
Surface roughness of dentine:	5
Effect of Luting cements type, manipulation, strength, and s	_
behavior on dentin bonding:	12
Preparation of dentin surface for bonding:	28
Aim of study	35
Materials and methods	36
Materials:	36
Methods:	
I- Collection of teeth:	37
II- Mounting the teeth in epoxy resin blocks:	37
III Samples groupings:	40
Tooth preparation prior to surface treatments:	41
Impression making:	41
Die preparations	42
Wax patterns construction:	42
Spruing, investing, casting, divesting, and cast try in:	45
Tooth Surface treatment prior to cementation:	45
Roughness calculation:	48
Cementation:	48
Subgroup (a):	49

Subgroup (b):	49
Subgroup(c):	50
Resistance to dislodgement of metal copings Meas	urements:
	50
Statistical Methods:	53
Results	54
Surface roughness	54
Dislodgement resistance under tension results	57
Mode of failure	67
Discussion	86
Summary and conclusions	95
Summary	
Conclusions;	
Recommendations;	
References	
الملخص العربي	

List of Tables

Table 1: Materials used:	.36
Table 2: Various sample grouping	.40
Table 3: shows the difference in Ra roughness values between all	
groups	.55
Table 4: compares the difference in roughness between all treated	Ĺ
groups	.55
Table 5: Descriptive statistics arranged by the treatment type	.63
Table 6: Multiple comparisons for control group	.63
Table 7: Multiple comparison for diamond group	.64
Table 8: Multiple comparisons for Sand Blast group	.64
Table 9: Multiple comparisons for Phosphoric acid group	.65
Table 10: Multiple comparison for EDTA group	. 65

List of Figures and graphs

Figure 1: sample embedded in epoxy resin block	39
Figure 2: industrial milling machine.	39
Figure 3: aparallelometer milling machine.	44
Figure 4: die stone.	44
Figure 5: phosphoric acid 37% etchant gel	47
Figure 6: sandblast machine.	47
Figure 7: stereomicroscope.	52
Figure 8: cement spring loading device.	52
Figure 9: universal testing machine.	52
Figure 10: Box plot showing the mean, standard error and	
standard deviation for the different groups used in the	
current study.	56
Figure 11: Shows multiple comparisons of bond strength	
between surface treatment and cement type for individu	al
groups	66
Figure 12: Shows multiple comparisons of bond strength	
between surface treatment and cement type for individu	al
groups	66
Figure 13: shows mode of failure of tested standard sample	
luted with zinc phosphate cement	68
Figure 14: shows mode of failure of tested standard sample	
luted with resin modified glassionomer luting cement	68
Figure 15: shows Mode of failure of standard sample luted	
with Adhesive resin based cement	69
Figure 16: shows Mode of failure of sample treated with	
coarse diamond stone and Luted with adhesive resin base	sed

Cement	69
Figure 17: shows mode of failure of sample treated with	
coarse diamond stone and luted with zinc phosphate	
cement	70
Figure 18: mode of failure of tested sample treated with coar	se
diamond stone and luted with resin modified glass ionon	ner
luting cement	70
Figure 19: mode of failure of tested sample treated with	
sandblasting and luted with resin cement	71
Figure 20: shows mode of failure of sample treated with	
sandblast and luted with resin modified glassionomer	
luting cement	71
Figure 21: shows mode of failure of sandblast treated sample	•
and luted with zinc phosphate cement	72
Figure 22: shows mode of failure of sample treated with	
EDTA and luted with zinc phosphate cement	72
Figure 23: shows mode of failure of sample treated with	
EDTA and luted with resin modified glassionomer luting	g
cement	
Figure 24: shows mode of failure of sample treated with ED	
and luted with adhesive resin based cement	73
Figure 25: shows mode of failure of sample treated with	
phosphoric acid and luted with adhesive resin based	
cement	74
Figure 26: shows mode of failure of sample treated with	
phosphoric acid and luted with resin modified	
Glassionomer luting cement	74
Figure 27: shows mode of failure of sample treated with	
phosphoric acid and luted with zinc phosphate Cement	75

Figure 28;SEM (EX 2500) showed standard sample luted with
RMGI cement75
Figure 29; SEM (EX 2500) showed sample treated with coarse diamond stone and luted with RMGI cement
and luted with RMGI cement76
Figure 31; SEM (EX 2500) showed sample treated with
phosphoric acid and luted with RMGI77
Figure 32; SEM (EX 2500) showed sample treated with
sandblasting and luted with RMGI cement77
Graph (1) shows maximum load produce failure in control group luted with adhesive resin based cement
Graph (4) shows maximum load produce failure in diamond group luted with adhesive resin based cement79
Graph (5) shows maximum load produce failure in diamond group luted with resin modified glassionomer luted cement
Graph (6) shows maximum load produce failure in diamond group luted with zinc phosphate cement
Graph (7) shows maximum load produce failure in sandblast group luted with adhesive resin based cement

Graph (8) shows maximum load produce failure in sandblast
group luted with zinc phosphate cement
Graph (9) shows maximum load produce failure in sandblast
group luted with resin modified glassionomer luted cement
82
Graph (10) shows maximum load produce failure in EDTA
group luted with adhesive resin based cement 82
Graph (11) shows maximum load produce failure in EDTA
group luted with zinc phosphate cement
Graph (12) shows maximum load produce failure in EDTA
group luted with resin modified glassionomer luted cement
Graph (13) shows maximum load produce failure in phosphoric
acid group luted with adhesive resin based cement 84
Graph (14) shows maximum load produce failure in phosphoric acid
group luted with zinc phosphate cement
Graph (15) shows maximum load produce failure in phosphoric acid
group luted with resin modified glassionomer luted cement
85