MEASUREMENT OF 8-ISOPROSTANE IN EXHALED BREATH CONDENSATE OF COPD PATIENTS

Thesis

Submitted for Partial Fulfillment of Master Degree
In Chest Diseases and Tuberculosis

By

Amany Abozied El -hefny

(M.B.B.CH)

Supervised by

Prof. Samiha Sayed Ahmed Ashmawi

Prof. of Chest Diseases

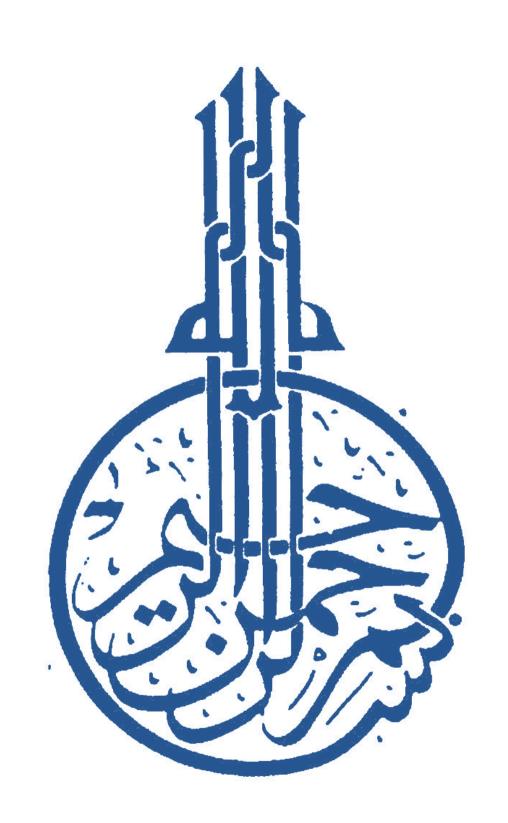
Faculty of Medicine – Ain Shams University

Dr. Ibrahim Ali Dwedar

Assistant Prof of Chest Diseases

Faculty of Medicine – Ain Shams University

Dr. Nesrine Aly Mohamed


Lecturer of Clinical Pathology

Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2016

List of Contents

Content	Page
Review of literature	
• Introduction.	1
• Exhaled Breath Condensate Analysis.	
• 8-isoprostane	
Subjects and Methods	55
Results	70
Discussion	97
Summary	111
Conclusion & Recommendations	113
References	114
الملخص باللغة العربية	137

List of Tables

No.	Table	
1	Impact level of COPD on health status	4
2	GOLD SPIROMETRIC CRITERIA FOR COPD SEVEREITY.	5
3	GOLD Staging Criteria for COPD	6
4	Key Indicators for Considering a Diagnosis of COPD	
5	dyspnea grades	16
6	Causes of Chronic Cough	17
7	Considerations in Performing Spirometry	
8	COPD and its Differential Diagnoses	
9	Classification of Severeity of Airflow Limitation in COPD	
10	Non-Pharmacologic Management of COPD	
11	Formulations and Typical Doses of COPD Medications	
12	Indications for Hospital Assessment or Admission	
13	Markers of inflammation in exhaled breath condensate	
14	Summary of studies on 8-isoprostane in EBC in patients with COPD	
15	severeity of disease in the studied cases	
16	smoking regarding the studied cases	
17	cough in the studied cases	
18	sputum in studied cases	
19	dyspnea in the studied cases	

20	ECG the studied cases	75
21	D.M in the studied cases	76
22	HTN in the studied cases	77
23	Radiological changes in the studied cases	78
24	patients characteristics	79
25	correlation between smoking and severeity of the disease	82
26	correlation between cough and severeity of disease	83
27	correlation between sputum and severeity of the disease	84
28	correlation between dyspnea and severeity of the disease	85
29	correlation between ECG result and severeity of the disease	86
30	correlation between D.M and severeity of the disease	87
31	correlation between HTN and severeity of the disease	
32	correlation between X-ray changes and severeity of the disease	
33	correlation between patients characteristics and spirometry results and severeity of the disease	
34	Pearson correlation of different criteria and 8-isoprostane	93
35	Correlation Coefficient of different criteria and 8-isoprostane	95

List of Figures

No.	Figure	Page	
1	severeity of disease regarding the studied cases	71	
2	smoking regarding the studied cases	72	
3	cough in the studied cases	73	
4	sputum in the studied cases	74	
5	dyspnea in the studied cases	75	
6	ECG in the studied cases	76	
7	D.M in the studied cases	77	
8	HTN in the studied cases	78	
9	patients characteristics	81	
10	Correlation between cough and severeity of disease	83	
11	Correlation between sputum and severeity of the disease	84	
12	Correlation between dyspnea and severeity of the disease	85	
13	Correlation between ECG result and severeity of the disease	86	
14	Correlation between D.M and severeity of the disease	87	
15	Correlation between HTN and severeity of the disease	88	
16	Correlation between X-ray changes and severeity of the	89	
	disease		
17	Correlation between patients characteristics and spirometry	92	
1/	results and severeity of the disease)2	

List of Abbreviations

Abb.	Description		
AECOPD	acute exacerbations of Chronic Obstructive Pulmonary Disease		
ATS/ERS	American Thoracic Society/European Respiratory Society		
BALF	Bronchoalveolar lavage fluid.		
BMI	body mass index		
BODE	body mass index ,obstruction, dyspnoea, and exercise		
CAT	COPD Assessment Test		
CCLS	Copenhagen City Lung Study		
CCQ	Clinical COPD Questionnaire		
CF	cystic fibrosis		
COPD	Chronic obstructive pulmonary disease		
CPAP	continuous positive airway pressure		
DM	Diabeitus mellitus.		
EBC	Exhaled breath condensate		
ENO	exhaled nitric oxide		
EUROSCOP	European Respiratory Society Study on Chronic Obstructive Pulmonary Disease		
FEV1	Forced expiratory volume in 1 second		
FVC	Forced vital capacity		

GOLD	Global Initiative for Chronic Obstructive Lung	
GOLD	Disease	
HCO3	Bicabonate	
HRCT	high resolution computed tomography	
HTN	Hypertension	
ISOLDE	Inhaled Steroids in Obstructive Lung Disease in	
	Europe	
LLN	lower limit of normal	
LTB4	leukotriene B4	
LVRS	lung volume reduction surgery	
mMRC	modified British Medical Research Council	
NHLBI	National Heart, Lung, and Blood Institute	
NMR	nuclear magnetic resonance	
NO	nitric oxide	
PaCo2	parital pressure of Co2 in arterial blood	
PaO2	parital pressure of O2 in arterial blood	
PG	prostaglandin	
PH	Power of hydrogen	
UACS	Upper Airway Cough Syndrome	
VC	vital capacity	

Abstract

Aim of the Work: Measuring 8 isoprostane in exhaled breath condensate (EBC) of COPD patients as a biomarker of oxidative stress.

Patients and Methods: This study was conducted at Ain Shams University Hospitals and included patients with chronic obstructive pulmonary disease diagnosed according to the criteria of the Global Initiative for Chronic Obstructive Lung Disease. The cases were divided into two groups, group A (included 80 cases having COPD), group B (control group) included 16 healthy persons. All the patients were subjected to arterial blood gas analysis, spirometric lung functions, Spirometry was done at the same hour of measurement of the exhaled breath condensate 8_isoprostane using exhaled breath condensate apparatus was assessed.

Results: spirometry showed worsening of lung functions in COPD cases which increased with the severity of the disease.

8-isoprostane increased in very severe COPD cases and correlated significantly to the severity of the disease.

Conclusion: Measurement Of 8-Isoprostane In Exhaled Brreath Condensate is a promising non invasive biomarker in COPD patients.

KEYWORDS: Exhaled breath condensate; 8_isoprostane; COPD;

Aim of the Work:

The aim of the present work is to measure the level of **8-Isoprostane** in Exhaled Breath Condensate of COPD patients and to compare it with normal individuals.

Definitions:

The definition of chronic obstructive pulmonary disease (COPD) and its subtypes (emphysema, chronic bronchitis, and chronic obstructive asthma) and the interrelationships between the closely related disorders that cause airflow limitation provide a foundation for understanding the spectrum of patient presentations. Severeal features of COPD patients identify individuals with different prognoses and/or responses to Whether these features identify treatment. separate "phenotypes" of COPD or reflect disease severeity remains unclear However, evaluation of these features can help guide clinical management, and their use in classification of patients is now recommended (Han et al., 2010).

COPD - The Global Initiative for Chronic Obstructive Lung Disease (GOLD), a project initiated by the National Heart, Lung, and Blood Institute (NHLBI) and the World Health Organization (WHO), defines COPD as follows. "Chronic obstructive pulmonary disease (COPD), a common preventable and treatable disease, is characterized by airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. Exacerbations and comorbidities contribute to the overall severeity in individual patients." (Rennard et al., 2013).

Symptoms of COPD:

The most common symptoms of COPD include chronic and progressive breathlessness, cough, sputum production, wheezing, and chest congestion. In addition to the airflow restriction and changes to the lung, COPD is associated with systemic effects and comorbidities. Systemic effects include weight loss, nutritional abnormalities and malnutrition, and skeletal muscle dysfunction. Common comorbidities are ischemic heart disease, osteoporosis, respiratory infection, bone fractures, depression and anxiety, diabetes, sleep disorders, anemia, glaucoma, cataracts, and cancer (*Quality-Based Procedures*, 2015).

COPD is a progressive disease. The rate of progression varies and may occur over severeal years or severeal decades, depending on factors such as continued exposure to noxious particles (e.g., tobacco smoke). There are severeal systems for classifying the severeity of COPD; one of the most widely used is the Global Initiative for Chronic Obstructive Lung Disease (GOLD) staging criteria, which are based on postbronchodilator spirometry (forced expiratory volume in 1 second [FEV1]). In the GOLD system there are 4 stages, which range from mild to very severe (Table 1) (*Quality-Based Procedures. 2015*).

Severeity scores:

The COPD Assessment Test (CAT) is a new scoring system for COPD patients, which provides a simple method for assessing the impact of COPD on the patient's health. The validation studies have shown that it has similar properties as St. George's Respiratory Questionnaire (SGRQ) (*Jones et al.*, 2011a; 2011b).

The CAT and FEV_1 are complementary measurements for assessment and management of COPD (*Jones et al.*, 2011a; 2011b).

The CAT is a standard and validated test containing eight items for the evaluation of the impact of COPD on health status (*Jones et al.*, 2009; 2011a).

It is a tool for the measurement of disease impact on health status, but FEV_1 is essential to establish a diagnosis and to confirm the severeity of airway obstruction in symptomatic COPD patients (*Celli et al.*, 2004).

CAT score:

After history taking and physical examination, all patients completed the Persian version of CAT respiratory questionnaire. The total CAT score was calculated for each individual by summing the points for each variable. CAT has a scoring range of zero to 40. The CAT score was classified into four groups of low (*Funk et al.*, 2009), medium (*GOLD*., 2008), high (*Fabbri et al.*, 2007) and very high (*Ong et al.*,

2006) based on the impact level of disease on health status as shown in Table (1).

Table (1): Impact level of COPD on health status

CAT score	Impact level
< 10	Low
10 – 20	Medium
21 - 30	High
> 30	Very high

Severeity of COPD was assessed by the COPD Severeity Score (COPDSS), which includes questions that comprise five overall aspects of COPD severeity: respiratory symptoms, systemic corticosteroid use, other COPD medication use, previous hospitalisation or intubation for respiratory disease, and home oxygen use. Each item was assigned an a priori weight based on clinical aspects of the disease and its expected contribution to overall COPD severeity. Missing values for medication use and other questions were defined as zero. Possible total scores range from 0 to 35 and higher scores reflect more severe COPD (*Eisner et al.*, 2009).

Table (2): GOLD SPIROMETRIC CRITERIA FOR COPD SEVEREITY (GOLD., 2010).

I: Mild COPD	• FEV1/FVC < 0.7	At this stage the
1. WIIIG COPD		At this stage, the
	• FEV1 ≥ 80%	patient may not be
	predicted	aware that their
		lung function is
		abnormal.
II: Moderate	• FEV1/FVC < 0.7	Symptoms usually
COPD	• $50\% \le FEV1 <$	progress at this
	80% predicted	stage, with shortness
		of breath typically
		developing on
		exertion.
III: Severe	• FEV1/FVC < 0.7	Shortness of breath
COPD	• 30% ≤ FEV1 <	typically worsens at
	50% predicted	this stage and often
	1	limits patients' daily
		activities.
		Exacerbations are
		especially seen
		beginning at
		this stage
IV: Very Severe	• FEV1/FVC < 0.7	At this stage, quality
COPD	• FEV1 < 30%	of life is very
	predicted or	appreciably
	FEV1 < 50%	impaired and
	predicted plus	exacerbations may
	chronic respiratory	be
	failure	life-threatening
	Tanuic	mc-uncaumig