Faculty of Medicine

Department of Anaesthesia & Intensive care

Awareness and Recall under Anaesthesia

An Essay Submitted For Partial Fulfillment of Master Degree In

Anaesthesiology

By

Ashraf Resmal Adly Fahim

(M.B.B.CH)

Under Supervision Of

Prof.Dr. / Nermín Sadek Nasr

Professor Of Anaesthesia And Intensive Care

Faculty Of Medicine - Ain Shams University

Dr. / Adel Mohamad Al Ansary

Assistant Professor Of Anaesthesia And Intensive Care

Faculty Of Medicine – Ain Shams University

Dr. / Mílad Ragaey zekry

Lecturer Of Anaesthesia And Intensive Care

Faculty Of Medicine – Ain Shams University

2013

جامعة عين شمس

Contents

Page
Introduction
Aim of the work
Physiology of memory
Types of awareness
Risk factors of awareness
Methods of assessment of awareness
Psychological sequelae of awareness117
Management of awareness
Summary
References
Arabic Summary

List of Abbreviation

AAI	. A-line ARX Index
AANA	. American Association of Nurse Anaesthetists
ACTH	AdrenoCorticoTrophic Hormone
AER(P)	. Auditory Evoked Response (Potential)
ANOVA	. Analysis of Variance
ARX	. Autoregressive model with an exogenous input
ASA	. American Society of Anaesthesiologists
ASSR	. Auditory Steady State Evoked Response
AUC	. Area Under the Curve
AVP	. Arginine Vasopressin
BAER	. Brainstem Auditory-Evoked Response
BDZ	. Benzodiazepines
BIS	. Bispectral Index Scale
BSR	. Burst Suppression Ratio
CER	. Comparative Effectiveness Research
CNS	. Central Nervous System
СРВ	. Cardiopulmonary Bypass
CS	. Cesarean Section
CVS	. Cardiovascular System
DoA	Depth of Anaesthesia

ECG Electrocardiogram
EEG Electroencephalogram
EMG Electromyogram
ETT Endotracheal Tube
FDAFood and Drug Administration
GAGeneral Anaesthesia
GH Growth Hormone
HRV Heart rate variability
Hz Hertz (cycle/sec)
ID Identification
IDT Induction to Delivery Time
IV Intravenous
JCAHO Joint Commission on Accreditation of Health Care Organization
LTMLong Time Memory
MACMinimum Alveolar Concentration
MIC Monitor Interface Cable
MLAER Middle Latency Auditory Evoked Response
N ₂ O Nitrous Oxide
P valuePropability value
PACUPost Anaesthesia Care Unit
PETPositron Emission Tomography
PIC Patient Interface Cable

PSA	. Patient State Analyzer
PSI	. Patient state Index
PTSD	. Post Traumatic Stress Disorder
RE	. Response Entropy
SD	. Standard Deviation
SE	. State Entropy
SEF	. Spectral Edge Frequency
SEMG	. Spontaneous Surface Electromyogram
SLOC	. Spontaneous Lower Oesophageal Contractility
SPSS	. Statistical Package for Social Sciences
SQI	. Signal Quality Indicator
SSER	. Somatosensory Evoked Response
STM	. Short Time Memory
TIVA	. Total Intravenous Anaesthesia
UDT	. Uterine incision to Delivery Time
US	. United States
USB	Universal Serial Bus
VER	Visual Evoked Responses

List of Figures

Figure No.	Figure title	Page No.
1	Atkinson-Shiffrin model of memory.	5
2	Types of awareness	14
3	International 10-20 system of electrode placement for recording electroencephalograms and sensory evoked responses.	55
4	EEG waveforms: alpha, beta, theta and delta.	56
5	Raw EEG waves. (A) the awake state; (B) $$ -activation; (C) burst suppression.	59
6	Fast Fourier transformation to convert raw EEG to power spectrum.	61
7	Schematic representation of a power spectrum.	62
8	Frontal view of the A-2000 BIS-XP Monitor (Aspect Medical Inc., Newton, MA, USA).	64
9	The BIS VISTA $^{\text{TM}}$ bilateral monitoring system.	65
10	A, Clinical correlations of the BIS index. B, EEG changes observed with increasing DoA.	66
11	Frontal view of the Narcotrend Monitor (Narcotrend Monitor, Schiller AG, Baar, Switzerland).	74
12	EEG patterns observed at different levels of anaesthesia and the respective Narcotrend stages.	75
13	Picture of the SEDLinew EEG instrument that is capable of calculation of PSI.	76
14	View of the M-Entropy module and the partial screen of the S/5 $^{\tiny{\$}}$ -Monitor (GE Healthcare, Helsinki, Finland).	77
15	The auditory evoked response.	82

List of Tables

Table No.	Table Title	Page No.
1	Patient perceptions of awareness	119
2	Prevention of awareness	122
3	Management of awareness during anaesthesia	127

Acknowledgment

First of all, thanks to GOD who supported and helped me to accomplish this work as a part of His generous help and support throughout of my life.

I would like to express my special thanks and deep appreciation to **Prof. Or. Nermin Sadek Naser,** Professor of Anaesthesia and Intensive care, Faculty of Medicine, Ain Shams University for her great help and support at the beginning of this work. I wish I could have the honor to work under her supervision. GOD bless her soul.

I would like to express my sincere appreciation and deep gratitude to Prof. Dr. Adel Mohamed Al Ansary, Professor of Anaesthesia and Intensive care, Faculty of Medicine, Ain Shams University for his kind supervision, encouragement and great support throughout the whole work.

I am very grateful to **Or.** Milad Ragaey Zekry, Lecturer of Anaesthesia and Intensive care, Faculty of Medicine, Ain Shams University for his continuous help and the tremendous effort he had done in the meticulous revision of this work.

At last, I am indebted for my family for their great support, patience, and continuous encouragement.

Ashraf Resmal

Introduction

Memory is not a single entity, recent classifications distinguish between two types: Explicit, or conscious memory, and implicit, or unconscious memory.

Explicit memory refers to the conscious collection of previous experiences. Implicit memory by contrast, refers to changes in performance or behavior that are produced by previous experiences but without any conscious recollection of those experience (Ghoneim, 2000)

The term "awareness" during anesthesia, as used in the anesthesia literature, implies that during a period of intended general anesthesia, the brain is aroused by stimuli that are stored in memory for future explicit recall. Patients who experience awareness will recall such experiences during a state of inadequate anesthesia (*Ghoneimet al, 2009*).

The incidence of awareness in nonobestetric, and noncadiac surgical cases is 0.2%. Yet it may be greater if light anesthesia is used. The incidence in obstetric cases is 0.4%, a higher incidence also has been reported for cardiac cases (ranges from 1.1-1.5%),

and major trauma cases (11-43%). This incidence varies according to the dose of anesthetic administered (*Ghoneim et al*, 2009), (*Rampersad&Mulroy*, 2005).

Aim of the work

The aim of the work is to throw light on types, risk factors and complications of Awareness under anaesthesia and discuss what might be done to manage it.

Physiology of memory

Definition of Memory:

Memory is one of the activities of the human mind, much studied by cognitive psychology. It is the capacity to retain an impression of past experiences. It was defined by *Lefrancois* (1995) as the availability of information and the ability to retrieve it and the previously acquired skills.

Memory is also defined as a set of active processes that encode and store information and rearrange it with related items which have already been stored in memory, so that it is easier to remember and can be located and retrieved whenever needed (Thompson and Kim, 1996).

So the main stages in the formation and retrieval of memory, are:

• **Encoding** (processing and combination of received information)

physiology of memory

- <u>Storage</u> (creation of a permanent record of the encoded information)
- <u>Retrieval</u> (calling back the stored information in response to some cue for use in some process or activity) (*Thompson and Kim, 1996*).

Models of Memory:

The concept of **memory** has generated the construction of many models in attempt to explain, understand and interpret its functions (*Thompson and Kim, 1996*).

A. Atkinson and Shiffrin Model of Memory (Multi-Store Model or Multi-Memory Model):

In 1968, Atkinson and Shiffrin proposed a model of human memory (figure1) which presented two distinct memory stores: short-term memory(STM), and long-term memory(LTM). Later a third memory store (actually the first in sequence) was added; the sensory memory. Here are some of the characteristics of each memory system:

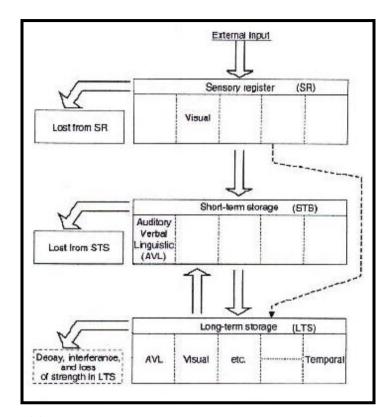


Figure (1): Atkinson-Shiffrin modelof memory. External stimuli enter the sensory memory, of which a portion is transferred into the STM. Small amount of the information then enters into the LTM of which the STM refers back to and expands on when needed (Atkinson and Shiffrin, 1968).