

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

BIVIO

Suez Canal University
Faculty of Engineering
Electrical Engineering Department
Port Said, Egypt.

Voltage Stability Enhancement Of Power Systems

BY

Wafaa Ibrahem Rashed

A THESIS

Submitted For The Degree Of Ph.D In Electrical Engineering From Suez Canal University, Egypt.

Supervised By:

Prof. Dr.M.Z.EL-Sadek Faculty of Engineering Assiut University, Dean of Aswan High Institute of Energy

Dr. M.Dessouky.M Dr.G.A.Mahmoud

Faculty of Engineering Suez Canal University

Port-Said

1997

Approval Sheet

The thesis entitled:

VOLTAGE STABILITY ENHANCEMENT OF POWER SYSTEMS

BY

WAFAA IBRAHEM RASHED

Has been approved by the following examination committee:

1- Prof. Soliman mohamed El Debeiky

Professor of Electrical Power

Department of Electrical Power and Machines,

Faculty of Engineering Ain-Shams,

Ain-Shams University.

Egypt.

2- Prof. Mohamed Z. El Sadek

Professor of Electrical Power

Department of Electrical Power and Machines, Assuit University

Dean of Energy Institute at Aswan,

M. El-Sadek

Egypt.

3- Dr. Ahmed Aly El Sarky

Vice President for System Planning

Electric Power System Engineering Company (E.P.\$)

Egypt.

ACKNOWLEDGEMENT

My sincere appreciation to prof. Dr. M.Z.EL-Sadek, Faculty of Engineering Assuit University, Dean of Aswan Institute of Energy for suggesting the point of research, his kind supervision, stimulating discussions and providing all facilities during the progress of this work.

My deep thanks to Dr. M. Dessouky. M., Faculty of Engineering, Suez Canal University, for his continuous encouragement and help.

My sincere gratitude to Dr.G.A. Mahmud ,Faculty of Engineering , Suez Canal University , for his supervision, continuous assistance and guidance throughout this work.

The author would like also to thank members of the Electrical Engineering Department, Suez Canal University for their help during this work.

To

Father

My Husband

Children

Contents

Chapter 1	Introduction	1
Chapter 2	General Review and Previous Work	6
	Detection Of Steady State Voltage Instability In Power Systems Via Different Criteria	15
3.1 Introduct	ion:	15
3.2 Formula	of Steady - State Voltage Stability Criteria	15
	e first Criterion (dE/dV Criterion)	15
3.2.2 The	e second Criterion (dZ/dV Criterion)	17
3.2.3 The	e Third Criterion (L-Indicator Criterion)	17
3.2.4 The	e Fourth criterion (Critical Load Voltage Criterion)	19
3.2.5 The	Fifth Criterion (Modal Analysis Concept Criterion)	20
	e Sixth Criterion (Zth / Zload Criterion)	21
3.3 Applicati	on of Steady-State Voltage Stability Criteria to Simple	
Two No	des Systems	22
3.4 Equivaler	nt Two Node System of Large Power Systems	22
3.5 Applicati	on of Steady-State Voltage Stability Criteria to Practical	
Power S	ystems	25
3.6 Detects of	of Actual Application of Steady-State Voltage Stability	
Criteria	•	27

3.7 A New Technique for Improvement of the Results of the Voltage Instability Criteria	
	32
3.7.1 Application of the New Proposed Technique to Practical	2.0
Power Systems (of Different Loadabilities)	36
3.8 Comparison of Computation Times	37
Chapter 4	
New Models For Load Representation in Steady-	
State Voltage Stability Studies	38
4.1 Introduction	38
4.2 Loads Representation	
4.3 Derivation Of New Load Models	4]
4.3.1 Induction Motor Load Models	
4.3.1.1 Induction Motors with Constant Mechanical Loads	
Torques $(T = Constant)$	42
4.3.1.2 Induction Motors with Mechanical Load Torques	
Proportional to Speed (Tαω)	43
4.3.1.3 Induction Motors with Mechanical Load Torques	
Proportional To Square Of Speeds $(T\alpha\omega^2)$	44
4.3.2 Aluminum Smelter Plant Load	45
4.3.3 Arc Furnace Load	46
4.3.4 Lighting Loads	47
4.3.4.1 Fluorescent Lamps Load	48
4.3.4.2 Mercury Vapor Lamps	49
4.3.5 Commerical Load	49
4.3.6 Residential load	51

4.3.7 Welding load	52
4.3.8 Synchronous Motor Load	
4.3.9 Practical Composite Loads	
4.4 Determination of Steady - State Voltage With Different Mode	els
Loads	57
4.4.1 Loading With Available Known Load Models	57
4.5 Resume of the Derived Load Models	74
4.6 Insertion Of The New Load Models In The Load- flow Studies	
Chapter 5	
Scenario of Application Of Proposed Technique Large Power Systems	s To 82
Chapter 6	
Static VAR Compensators For Improvement of	
Steady-State Voltage Stabilities	83
6.1 Introduction	
6.2 Power system Modeling	
6.3 TCR/FC Static VAR Compensator	84
6.4 Static VAR Compensator and System Model	85
6.5 System Equations Formulation (Problem Formulation)	
6.6 Determination of Compensator Rating	
6.7 Results and Discussions	

,

,

6.7.1 Control Her Gains	91
6.7.2 Controller Reference Voltages	
6.7.3 Influence of Load Power Factor on Compensator gains	
and Reference Voltages	93
6.7.4 Effect of System Impedances on Required Controller Gains	94
6.7.5 Determination of Compensator Rating	96
6.8 Fixed Shunt Capacitors Or Mechanically Switched Shunt	
Capacitors For Enhancement Of Steady State Voltage Stabilities	
6.8.1 Case of Constant Load Reactive Power and Variable Powers	
	100
6.8.2 Case of Constant Load Power and Variable Load Reactive	
Powers 6.9.2 Cose of Variable Loads, With Constant Power Factor	
6.8.3 Case of Variable Loads With Constant Power Factor	
Influence of Control Systems on Shunt Capacitor Rating	100
for Voltage Stability Enhancement Requirements 6.9 Influence Of Control Systems On Shunt Capacitor Rating For	100
Voltage Stability Enhancement Rquirements	102
Voltage Stability Elimaneoment requirements	102
Chapter 7	
Tap Changing Transformer Role In Voltage	
	107
Stability Enhancement	107
7.1 Model of Transformer With Tap Changer	107

-...

.

.

7.2 Application to a test system	
7.3 Interrelation Between Loads Power and Tap-Changing Ratio at	
Different Load Voltages	113
7.3.1 With Constant Load Reactive Power	114
7.3.2 With Constant Load Real Power	115
Chapter 8	
Combined Use of Tap-Changing Transformer and	
Static VAR Compensator For Steady -State Voltage	
Stability Enhancement	117
8.1 Introduction	117
8.2 Studied System	
8.3 Static VAR Compensator and Power System With Tap-Changing	
Transformer model	119
8.4 Studied System Equations	121
8.5 Compensator Rating	
8.6 Result and discussions	
8.7 Load Power/Voltage Response Wth Presence Of Tap- Changing	
Transformer and Static VAR Compensator	127
8.8 Static VAR Compensator Parameters in The Presence of Load	
Tap-Changing Transformers	130
8.8.1 Compensator Controller Gains	130
8.8.2 Compensator Controller Reference Voltage With	
Presence Of Tap - Changing Transformer	130

•

.

•

.

Ch	apter 9	
	Series Capacitors Combined With Static VAR Compensators For Steady- State Voltage Stability	
	Enhancement	137
9.1	Introduction:	137
9.2	Studied Practical System:	138
	Represntation of Static VAR Compensation and Power System	
	With Series Capacitors	139
9.4	System Equations	141
9.5	Role of Compensation in Increasing Voltage Stability Limits	142
9.6	Load Voltage/Power Characteristics in The Presence of Varaible	
	Series Capacitors	144
9.7	Combination of Series Capacitors and Static VAR	
	Compensatores for Enhancement of Steady State Voltage	
	Instability	145
9.8	Effect of Series Compensation Percentage on the SVC Controller	
	Reference Voltage	148
9.9	Influence of the Series Capacitor Percentage on the Static VAR	
	Compensator Rating	150

*