

Construction of anion selective polymeric membrane electrodes based on metal salen complexes

Thesis submitted for the degree of master In Inorganic and analytical chemistry

Presented by

Ahmed Shawky Ahmed Abd El-Hameed

B.Sc. (2006) Chemistry department, Faculty of science, Ain Shams University

Supervised by

Prof. Dr. Ibrahim Hosiny Ali Badr

Prof. of analytical chemistry, Faculty of science, Ain Shams University

Prof. Dr. Mostafa M. H. Khalil

Prof. of inorganic chemistry, Faculty of science, Ain Shams University

Dr. Abd Elnaby Mohamed Salem

Lecturer of inorganic chemistry,

Chemistry department, Faculty of Science, Ain Shams University

Construction of anion selective polymeric membrane electrodes based on metal salen complexes

Thesis Submitted by

Ahmed Shawky Ahmed Abd El-Hameed

For the Degree of M.Sc of science in (Inorganic & Analytical Chemistry)

To

Department of Chemistry

Faculty of Science

Ain Shams University

Faculty of Science Chemistry Department

Construction of anion selective polymeric membrane electrodes based on metal salen complexes

Thesis Advisors	Thesis Approval
Prof. Dr. Ibrahim Hosiny Ali Badr	•••••
Prof. of analytical chemistry,	
Faculty of science, Ain Shams University	
Prof. Dr. Mostafa M. H. Khalil Prof. of inorganic chemistry, Faculty of science, Ain Shams University	•••••
Dr. Abd Elnaby Mohamed Salem	•••••
Lecturer of inorganic chemistry,	
Faculty of Science, Ain Shams University	

Head of Chemistry department

Prof. Dr. Maged Shafik Antonious Nakhla

Dedication

I do appreciate my God for giving me wonderful parents who are enlighting and always supporting me in all my life

I also thank all my family and my friends for continuous encouragement and help

ACKNOWLEDGEMENT

First and foremost, I would like to thank **God** for giving me the opportunity and well-power to accomplish this work

I would like to express my sincere gratitude and indebted to **Prof. Dr. Ibrahim Hosiny Ali Badr**, Prof. of Analytical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University. He was always kind enough to suggest the topics of research and to follow up the progress of the work with keen interest, guidance and valuable criticism and whose efforts made this humble work as possible.

Also, I wish to express my sincere gratitude **Prof. Dr. Mostafa M. H. Khalil**, Prof. of inorganic Chemistry,
Chemistry Department, Faculty of Science, Ain Shams
University. He was always kind enough to suggest the topics of
research and to follow up the progress of the work with keen
interest, guidance and valuable criticism and whose efforts made
this humble work as possible.

Furthermore, I wish to express my sincere gratitude to **Dr. Abd elnaby Mohammed Salem,** Lecturer of inorganic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for him efforts during this research work.

Finally, deep thanks and gratitude to all my colleagues in faculty of science, Ain shams university.

Ahmed Shawky Ahmed

List of contents

Chapter 1 General introduction	Page No
1.1 Chemical Sensors	5
1.2. Theory and principle of ion selective electrodes	7
1.3. Potentiometric selectivity	10
1.3.1. Separate solution method	13
1.3.2. Fixed interference method (FIM)	14
1.3.3. Matched potential method (MPM)	15
1.4. Classification of ion selective membrane electrodes	16
1.4.1. Solid membranes electrodes	17
1.4.1.1. Glass membrane electrode	17
1.4.1.2. Homogenous solid-state-membrane electrodes	19
1.4.1.3. Heterogeneous solid-state membrane electrodes	21
1.4.2. Modified ISEs	22
1.4.2.1. Gas-sensing membrane probes	22
1.4.2.2. Enzyme electrodes	23
1.4.3. Liquid and liquid/polymeric membrane electrodes	23
1.5. Components of liquid polymeric membrane electrodes	25
1.5.1. Polymeric matrix	25
1.5.2. Solvent (plasticizer)	26
1.5.3. Ionophore (recognition element)	27
1.5.3.1. ion-exchangers	29
1.5.3.2. Neutral carriers	31

1.5.3.3. Charged carriers	33
1.5.4. Ionic additives	34
1.6. Characterization of an Ion-Selective Electrode	37
1.6.1. Selectivity	37
1.6.2. Detection limit	37
1.6.3. Response time	39
1.7. References	40
Chapter 2 Synthesis and Characterization of Schiff Ba and Their Complexes	ses
and Their Complexes	
2.1. Introduction	51
2.2. Experimental	57
2.2.1. Materials	57
2.2.2. Instruments	57
2.2.3. Syntheses of the ligands	58
2.2.4. Syntheses of Schiff base complexes	59
2.2.5. Antimicrobial screening	60
2.2.6. Determination of magnetic susceptibility	61
2.3. Results and discussion	62
2.3.1. Characterization of Ligands and Complexes	64
2.3.1.1. Infrared Spectroscopy	64
2.3.1.2. ¹ H NMR spectra	80
2.3.1.3. Electronic spectra and Magnetic Studies	89
2.3.1.4. ESR spectra	93
2.3.1.5. Fluorescence spectra	96
2.3.1.6.Thermogravimetric Studies	99
2.3.2. Biological activity	102
2.4. Conclusion	102
2.5. References	104

Chapter 3 Anion selective membrane electrodes based on **Metal Schiff base complexes** 3.1. Introduction 115 3.1.1. Importance of anions 118 3.2. Thiocyanate selective membrane electrodes 121 based on Mn(II) and Cu(II) Schiff base complexes 3.2.1.Experimental 121 3.2.1.1. Reagents and Equipments 121 3.2.1.2. Preparation of membrane electrodes and 123 potentiometric measurements 3.2.1.3. Evaluation of potentiometric selectivity and 124 pH response 3.2.1.4. Spectrophotometric determination of SCN⁻ in 126 saliva 3.2.2. Results and Discussion 126 3.2.2.1. Influence of the membrane composition 126 3.2.2.2. Effect of pH on the potentiometric responses 151 of SCN sensitive membrane electrodes 3.2.2.3. Dynamic response time 155 3.2.2.4. Potentiometric signal reversibility 157 3.2.2.5. Life time of optimized membrane electrodes 160 3.2.2.6. Spectrophotometric Study of Anion- Carriers 162 Interactions 3.2.2.7. Comparative Study of membrane selectivity 165 3.2.2.8. Analytical application 167 3.2.3. Conclusion 170

3.3. Iodide selective membrane electrodes	171
based on Cd(II) Schiff base complexes	1/1
3.3.1. Experimental	171
3.3.1.1. Reagents and Equipments	171
3.3.1.2. Preparation of membrane electrodes and potentiometric measurements	172
3.3.1.3. Determination of iodide and iodine in povidone-iodine compound	172
3.3.1.4. Flow injection setup	173
3.3.2. Results and Discussion	175
3.3.2.1. Influence of the membrane composition	175
3.3.2.2. Effect of pH on the potentiometric responses of iodide sensitive membrane electrodes	190
3.3.2.3. Dynamic response time	192
3.3.2.4. Potentiometric signal reversibility	193
3.3.2.5. Life time of the optimized membrane electrode	195
3.3.2.6. Spectrophotometric Study of Anion- Carriers Interactions	196
3.3.2.7. Comparative Study of membrane selectivity	198
3.3.2.8. Analytical application	200
3.3.2.8.1. Titration of iodide solution with a standard silver nitrate solution	202
3.3.2.8.2. Determination of iodide and iodine in commercially betadine (povidone-iodine) solution	202
3.3.2.8.3. Flow injection analysis (FIA) of iodide	204
3.3.3. Conclusion	207
3.4.References	208

List of figures

Figure	description	Page No
Fig (1.1)	Schematic representation of the basic units of chemical sensor.	6
Fig (1.2)	Schematic representation of an ISE measuring-cell assembly.	7
Fig (1.3)	Representation of SSM	13
Fig (1.4)	Representation of FIM	14
Fig (1.5)	Representation of MPM	15
Fig (1.6)	Hydrated surface layers of glass membrane.	18
Fig (1.7)	Close look at LaF ₃ crystal	20
Fig (1.8)	Schematic representation of preparation of liquid polymeric membrane.	24
Fig (1.9)	Structure of PVC, PU, <i>o</i> -NPOE and DOS.	26
Fig (1.10)	Schematic representation of ion carrier interaction	28
Fig (1.11)	Types of anion-selective species that can be doped in a conventional polymer membrane anion sensor.	28
Fig (1.12)	Chemical structure of common neutral carriers.	32
Fig (1.13)	Chemical structure of lipophilic ionic additives used in ion selective electrodes	34

[
Fig (1.14)	Schematic representation of charged and neutral carrier mechanisms and the role of ionic additives in membrane phase.	35
Fig (1.15)	Definition of Upper and lower detection limit of an ISE.	38
Fig (2.1)	FT-IR spectrum of H ₂ L ¹ Schiff base ligand.	67
Fig (2. 2)	FT-IR spectrum of MnL ¹ complex.	68
Fig (2. 3)	FT-IR spectrum of CuL ¹ complex.	69
Fig (2. 4)	FT-IR spectrum of CdL ¹ complex.	70
Fig (2.5)	FT-IR spectrum of H ₂ L ² Schiff base ligand.	71
Fig (2.6)	FT-IR spectrum of MnL ² complex.	72
Fig (2.7)	FT-IR spectrum of CuL ² complex.	73
Fig (2.8)	FT-IR spectrum of CdL ² complex.	74
Fig (2.9)	FT-IR spectrum of H ₂ L ³ Schiff base ligand.	75
Fig (2.10)	FT-IR spectrum of MnL ³ complex.	76
Fig (2.11)	FT-IR spectrum of CuL ³ complex.	77
Fig (2.12)	FT-IR spectrum of CdL ³ complex.	78
Fig (2.13)	¹ H NMR of H ₂ L ¹ Schiff base ligand.	82
Fig (2.14)	¹ H NMR spectrum of CdL ¹ complex.	83
Fig (2.15)	¹ H NMR of H ₂ L ² Schiff base ligand.	84
Fig (2.16)	¹ H NMR spectrum of CdL ² complex.	85
Fig (2.17)	¹ H NMR of H ₂ L ³ Schiff base ligand.	86
Fig (2.18)	¹ H NMR spectrum of CdL ³ complex.	87
Fig (2.19)	¹ HNMR of H ₂ L ² Schiff base ligand after treatment with D ₂ O.	88
Fig (2.20)	UV-Vis spectra of H_2L^1 and its complexes in DMF.	91
Fig (2.21)	UV-Vis spectra of H_2L^2 and its complexes in DMF.	92

Fig (2.22)	UV-Vis spectra of H_2L^3 and its complexes in DMF.	92
Fig (2.23)	ESR spectra of the reported complexes at room temperature.	95
Fig (2.24)	Fluorescence spectra of H_2L^1 and its complexes.	98
Fig (2.25)	Fluorescence spectra of H ₂ L ² and its complexes.	98
Fig (2.26)	Fluorescence spectra of H ₂ L ³ and its complexes.	99
Fig (2.27)	TGA of ML ¹ complexes.	100
Fig (2.28)	TGA of ML ² complexes.	101
Fig (2.29)	TGA of ML ³ complexes.	101
Fig(3.1)	Chemical structures of Mn(II) and Cu(II) ionophores.	123
Fig (3.2)	Potentiometric responses of membrane electrodes based on A2 and A4 ionophores as representatives of Mn(II) and Cu(II) Schiff base complexes respectively, prepared using 66 mg PVC, 132 mg o -NPOE and 30 mol % KTFPB measured in 50 mM acetate buffer, pH 4.7, towards: $ClO_4^-(\blacksquare)$, $SCN^-(\bullet)$, $\Gamma(\blacktriangleright)$.	132
Fig (3.3)	Fig (3.3) Potentiometric responses of thiocyanate sensitive membrane electrode (C) based on A1 ionophore measured in 50mM acetate buffer, pH 4.7, towards various anions: Cl $^{-}$ (\bigcirc), F $^{-}$ (\bigcirc), Br $^{-}$ (\square), SO ₄ $^{2-}$ (\times), NO ₃ $^{-}$ (\triangleright), CH ₃ COO $^{-}$ (\triangleleft), ClO ₄ $^{-}$ (\blacksquare), SCN $^{-}$ (\bigcirc), NO ₂ $^{-}$ (\triangleleft), Γ (\triangleright).	133

	Fig. (2.1) Potentiometric responses of	
Fig (3.4)	Fig (3.4) Potentiometric responses of thiocyanate sensitive membrane electrode (I) based on A2 ionophore measured in 50mM acetate buffer, pH 4.7, towards various anions (see Fig (3.3) for legend).	133
Fig (3.5)	Fig (3.5) Potentiometric responses of thiocyanate sensitive membrane electrode (O) based on A7 ionophore measured in 50mM acetate buffer, pH 4.7, towards various anions (see Fig (3.3) for legend).	134
Fig (3.6)	Fig (3.6) Potentiometric responses of thiocyanate sensitive membrane electrode (B) based on A3 ionophore measured in 50mM acetate buffer, pH 4.7, towards various anions (see Fig (3.3) for legend).	134
Fig (3.7)	Fig (3.7) Potentiometric responses of thiocyanate sensitive membrane electrode (H) based on A4 ionophore measured in 50mM acetate buffer, pH 4.7, towards various anions (see Fig (3.3) for legend).	135
Fig (3.8)	Fig (3.8) Potentiometric responses of thiocyanate sensitive membrane electrode (N) based on A8 ionophore measured in 50mM acetate buffer, pH 4.7, towards various anions (see Fig (3.3) for legend).	135

Fig (3.9)	Schematic representation of the selectivity coefficients, $\log K^{\text{pot}}_{\text{SCN;Anion}}$, of SCN sensitive membrane electrodes prepared using A1 ionophore in comparison with the selectivity coefficient values of anion exchanger.	138
Fig (3.10)	Schematic representation of the selectivity coefficients, $\log K^{\text{pot}}_{SCN;Anion}$, of SCN sensitive membrane electrodes prepared using A2 ionophore in comparison with the selectivity coefficient values of anion exchanger.	140
Fig (3.11)	Schematic representation of the selectivity coefficients, $\log K^{\text{pot}}_{\text{SCN;Anion}}$, of SCN sensitive membrane electrodes prepared using A7 ionophore in comparison with the selectivity coefficient values of anion exchanger.	142
Fig (3.12)	Schematic representation of the selectivity coefficients, $\log K^{\text{pot}}_{\text{SCN;Anion}}$, of SCN sensitive membrane electrodes prepared using A3 ionophore in comparison with the selectivity coefficient values of anion exchanger.	144
Fig (3.13)	Schematic representation of the selectivity coefficients, $\log K^{\text{pot}}_{SCN;Anion}$, of SCN sensitive membrane electrodes prepared using A4 ionophore in comparison with the selectivity coefficient values of anion exchanger.	146

Fig (3.14)	Schematic representation of the selectivity coefficients, $\log K^{\text{pot}}_{\text{SCN;Anion}}$, of SCN sensitive membrane electrodes prepared using A8 ionophore in comparison with the selectivity coefficient values of anion exchanger.	148
Fig (3.15)	Schematic representation of the selectivity coefficients, $\log K^{\text{pot}}_{SCN;Anion}$, of SCN sensitive optimal membrane electrodes C, I and O based on Mn(II) ionophores in comparison with the selectivity coefficient values of anion exchanger.	149
Fig (3.16)	Schematic representation of the selectivity coefficients, $\log K^{\text{pot}}_{SCN;Anion}$, of SCN sensitive optimal membrane electrodes B, H and N based on Cu(II) ionophores in comparison with the selectivity coefficient values of anion exchanger.	150
Fig (3.17)	pH effect on the potential response of C membrane electrode at two different thiocyanate concentrations.	152
Fig (3.18)	pH effect on the potential response of I membrane electrode at two different thiocyanate concentrations.	153
Fig (3.19)	pH effect on the potential response of O membrane electrode at two different thiocyanate concentrations.	153