Study of efficacy of vitamin D supplement on disease progression and glycemic control in patients with prediabetes and type 7 diabetes

Thesis

Submitted for Partial Fulfillment Of Doctorate degree in Internal Medicine

By

Rasha Ahmed Ibrahim

Master degree in Internal Medicine, Ain Shams University

Supervisors

Prof. Dr. Mohammed Hesham El Gayar

Professor of Internal Medicine & Endocrinology Ain Shams University

Prof. Dr. Magda Shukry

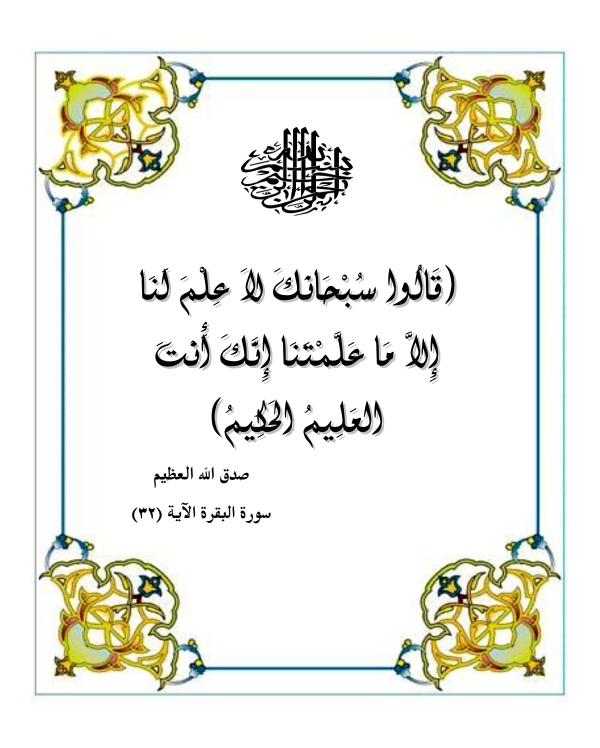
Professor of Internal Medicine & Endocrinology Ain Shams University

Prof. Dr. Manal Abu Shady

Professor of Internal Medicine & Endocrinology Ain Shams University

Assist. Prof. Dr. Yara Mohammed Eid

Assistant Professor of Internal Medicine & Endocrinology


Prof. Dr. Safa Refaat

Professor of Internal Medicine Research Institute of Ophthalmology

Faculty of Medicine

Ain Shams University

7.17

Acknowledgement

First and for most, thanks are due to **ALLAH**, the most beneficent and merciful.

9 would like to express my sincerest gratitude to **Prof.**, **Dr. Mohammed Hesham El Gayar**, Professor of internal medicine & endocrinology – Ain
Shams University. This work has been the fruitful outcome of his valuable
advice, super-vision and care.

It gives me great pleasure to express my sincere appreciation to **Prof. Dr. Magda Shukry**, Professor of internal medicine & endocrinology – Ain Shams University for her time, insight, and constant support and encouragement

I also wish to express my deep sense of gratitude and sincere thanks to **Prof. Dr. Manal** Abu Shady, Assistant Professor of Internal medicine & endocrinology – Ain Shams university, for her continuous super-vision, encouragement and support.

I also wish to express my sincere gratitude and thanks to Assist. **Prof. Dr. Yara Eid**, Assistant Professor of Internal medicine & endocrinology –

Ain Shams university, for her continuous super-vision, guidance, encouragement and support.

I would also like to express my gratitude to **Prof. Dr. Safa Refaat**, Professor of internal medicine - Research Institute of Ophthalmology, for his guidance and support which has been essential to complete this work.

I feel greatly indebted to Staff members of chemistry lab., Ain shams University hospitals for their serious efforts and valuable suggestions.

It is a great honor to acknowledge my indebtedness to my husband for his great support and encouragement, to my mother and my daughter.

Contents

	Page
1) Introduction	
7) Aim of work	س
") Review of literature:	
Chapter (1): Pre-diabetes, type 7 diab	
Chapter (): Vitamin D	٥٢
Chapter ("): Vitamin D and type " diab mellitus	
f) Subjects and Methods	179
o) Results	154
7) Discussion	Y
V) Summary and Conclusion	۲11
A) Recommendations	710
q) References	٢17
1 ·) Master Sheet	779
1 1) Arabic summary	79V

Tist of Abbreviations

ADA	The American Diabetes Association
AGEs	Advanced glycation end products
BCE	Before the Common Era
BMI	Body mass index
CAC	Coronary artery calcium
CDC	Centers for Disease Control and Prevention
CRP	C-reactive protein
CTA	Coronary CT angiography
CVD	Cardiovascular disease
DBP	Vitamin D Binding Protein
DCCT	Diabetes Control and Complications Trial
DPP	Diabetes Prevention Program
DPPOS	Diabetes Prevention Program Outcomes Study
DPS	Diabetes Prevention Study
FGF-۲۳	Fibroblast growth factor ۲۳
GDM	Gestational diabetes mellitus
GFR	Glomerular filtration rate
GI	Glycemic index
GIPR	Gastric inhibitory polypeptide
IDE	International Diabetes Federation

IFGImpaired fasting glucose

IGTImpaired glucose tolerance

MUFAMonounsaturated fatty acids

NGSP National Glycohemoglobin Standardization Program

NHANES \(^\)...National Health and Nutrition Examination Survey Mortality Study

NNSsNon-nutritive sweeteners

OGTTOral glucose tolerance test

PTHParathyroid hormone

SGLT[↑]-ISodium-glucose cotransporter-[↑] inhibitors

SNPsSingle-nucleotide polymorphisms

TNF-a.....Tumour necrosis factor-alpha

UKPDSU.K. Prospective Diabetes Study

Solar Solar Ultraviolet B

VDR.....Vitamin D Receptor

Vitamin D[↑] ..Ergocalciferol

Vitamin D^γ ..Cholecalciferol

WHOWorld Health Organization

FPI Fasting plasma insulin

TG Triglycerides

HDL High density lipoprotein

LDL Low density lipoprotein

BMI body mass index

SBP Systolic blood pressure

DBP Diastolic blood pressure

MBP Mean blood pressure

List of Figures

Figure N	o. Page No.
Figure (1):	Top countries for people with diabetes (۲۰-۷۹ years)
Figure (⁷):	Deaths attributable to diabetes by age (YY4)Y1
Figure (*):	Abbreviated algorism of anti-hyperglycemic therapy of type ⁷ diabetes
Figure (٤):	Chemical structure of vitamin D
Figure (°):	Structure of vitamin D ^r (cholecalciferol) and vitamin D ^r (ergocalciferol) and their precursors
Figure (٦):	The synthesis and metabolism of vitamin D in the regulation of mineral homeostasis and non-skeletal functions
Figure (^V):	Mechanism of action of vitamin D
Figure (^):	Vitamin D modulates the inflammatory response of immune cells, such as macrophages and monocytes
Figure (٩):	Prevalence of low vitamin D status in various populations

Figure (' '):	Major Causes of vitamin D deficiency and potential health consequences
Figure (\\):	Effect of Vitamin D on gene expression
Figure (\ \ \):	Obesity and vitamin D deficiency 177
Figure (۱۳):	Change in the FBG level in patients receiving or not receiving cholecalciferol in the three studied groups
Figure (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Change in the PPBG level in patients receiving or not receiving cholecalciferol in the three studied groups
Figure (\ °):	Change in the HbA\c level in patients receiving or not receiving cholecalciferol in the three studied groups\o\xi
Figure (۱۲):	Change in the FPI level in patients receiving or not receiving cholecalciferol in the three studied groups
Figure (\ \ \):	Percentage of change in the HOMA-IR in patients receiving or not receiving cholecalciferol in the three studied groups \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Figure (۱۸):	Percentage of change in the total serum cholesterol level in patients receiving or not

	receiving cholecalciferol in the three studied
	groups
Figure (۱۹):	Percentage of change in the serum TG level in patients receiving or not receiving cholecalciferol in the three studied groups \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Figure (Y·):	Percentage of change in the serum HDL level in patients receiving or not receiving cholecalciferol in the three studied groups ۱۷۰
Figure (۲۱):	Percentage of change in the serum LDL level in patients receiving or not receiving cholecalciferol in the three studied groups \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Figure (۲۲):	Percentage of change in the BMI in patients receiving or not receiving cholecalciferol in the three studied groups
Figure (۲۳):	Percentage of change in the SBP in patients receiving or not receiving cholecalciferol in the three studied groups
Figure (Y [£]):	Percentage of change in the DBP in patients receiving or not receiving cholecalciferol in the three studied groups

Figure (Y°):	receiving or	not receiv	ing c	he MBP in patients cholecalciferol in the
Figure (۲٦):				hydroxy-cholecalci-
Figure (۲۷):				hydroxy-cholecalci-
Figure (۲۸):				hydroxy-cholecalci- etics۱۹۱
Figure (۲۹):				hydroxy-cholecalci- etics۱۹۱
Figure (**):	ferole and sy	ystolic bloo	od pr	hydroxy-cholecalci- essure in Naive type
Figure (*1):				hydroxy-cholecalci- ype ⁷ diabetics ¹⁹⁷
				hydroxy-cholecalci- pe ⁷ diabetics ۱۹۳
Figure (٣٣):	ferole and w	vaist circur	nfere	hydroxy-cholecalci- ence in Naive type ۲

Figure (٣٤):	Correlation	between	70	hydroxy-cholecalci-
	ferole and ch	nolesterol i	n Na	ive type 7 diabetics 195
Figure (*°):				hydroxy-cholecalcipe 7 diabetics 195
Figure (٣٦):				hydroxy-cholecalcipe Y diabetics ۱۹٥
Figure (*V):				hydroxy-cholecalci- ype Y DM ۱۹٥
Figure (٣٨):	Correlation	between	70	hydroxy-cholecalci-

ferole and height in treated type Y DM 197

List of Tables

Table No	Page No.
Table (\):	Recommended targets for glycemic control o
Table (Ÿ):	Classification of vitamin D group of molecules
Table (*):	Risk factors for vitamin D insufficiency and deficiency
Table (٤):	Laboratory and Radiographic findings that suggest possible vitamin D deficiency
Table (°):	Vitamin D intakes recommended by the IOM and the Endocrine Practice Guidelines Committee ۲۰۱۱
Table (기):	Studies that associate vitamin D with type Y diabetes
Table (Y):	Shows Comparison of Patients' Demographic data
Table (^):	Comparison of anthropometric measurements and biochemical laboratory data
Table (٩):	Comparison of the percentage of change in FBG among studied groups by two way ANOVA \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Table (' ·):	Comparison of the percentage of change in FBG among studied groups
Table (۱۱):	Comparison of the percentage of FBG among sub-groups who received cholecaciferol in studied groups
Table (۱۲):	Comparison of the percentage of change in PPBG among studied groups by two way ANOVA
Table (۱۳):	Comparison of the percentage of change in PPBG among studied groups
Table (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Comparison of the percentage of PPBG among groups who received cholecalciferol in studied groups
Table (۱°):	Comparison of the percentage of change in HbA\c level among studied groups by two way ANOVA
Table (۱۲):	Comparison of the percentage of change in HbA\c among studied groups\)
Table (۱۷):	Comparison of percentage of change in Hb\Ac among groups received cholecalciferol in studied groups

Table (\ \ \ \) :	Comparison of the percentage of change in
	Fasting plasma insulin among studied groups by
	two way ANOVA
T 11 (14)	
Table (11):	Comparison of the percentage of change in
	fasting plasma insulin among studied groups \o\
Table (Y·):	Comparison of the percentage of change in
,	fasting plasma insulin among those who
	received cholecalciferol between each 7 groups 101
	8
Table (۲):	Comparison of the percentage of change in the
	HOMA-IR among studied groups by two way
	ANOVA
Table (۲۲).	Comparison of the percentage of change in
Table (++).	HOMA-IR among studied groups
	Trowa-ix among studied groups
Table (۲۳):	Comparison of the percentage of change in
	HOMA-IR among those who received
	cholecalciferol between each Y groups ١٥٨
m 11 (¥4)	
Table (' *):	Comparison of the percentage of change in total
	serum cholesterol level among studied groups
	by two way ANOVA
Table (۲°):	Comparison of the percentage of change in total
` /	cholesterol level among studied groups