

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

INTEGRATED POWER MANAGEMENT IN CMOS TECHNOLOGY

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Haidi Mohamed Ahmed Mohamed El Bahr

B.Sc. of Electrical Engineering (Electronics and Communications Engineering) Ain Shams University, 2006

Supervised By

Prof. Hani Fikry Ragai Dr. Emad Hegazi **STATEMENT**

This dissertation is submitted to Ain Shams University for

the degree of Master of Science in Electrical Engineering

(Electronics and Communications Engineering).

The work included in this thesis was carried out by the

author at the Electronics and Communications Engineering

Department, Faculty of Engineering, Ain Shams University,

Cairo, Egypt.

No part of this thesis was submitted for a degree or a

qualification at any other university or institution.

Name: Haidi Mohamed Ahmed Mohamed El Bahr

Signature:

Date:

CURRICULUM VITAE

Name of Researcher : Haidi Mohamed Ahmed Mohamed El Bahr

Date of Birth : 30/07/1984

Place of Birth : Cairo, Egypt

First University Degree : B.Sc. in Electrical Engineering

Name of University : Ain Shams University

Date of Degree : June 2006

ABSTRACT

Haidi Mohamed Ahmed Mohamed El Bahr, Integrated Power

Management in CMOS technology, Master of Science dissertation, Ain

Shams University, 2012.

Power management has had an ever increasing role in the present electronic industry.

Battery powered and handheld applications require power management techniques to extend the life of the battery and consequently the operation life of the device.

Most systems incorporate several voltage regulators to supply various subsystems and provide isolation among such subsystems.

This dissertation demonstrates the design of Low dropout (LDO) voltage regulator for enhancing current efficiency; this design includes the core of the LDO and its voltage reference.

Additionally, the dissertation demonstrates a Design Methodology for LDO core and its voltage reference.

Two main constraints were regarded through the whole work; full integration in CMOS and suitability for low voltage applications.

These constraints were considered in two aspects; circuit analysis and design.

The LDO regulator and its voltage reference were designed in 130nm CMOS technology.

The designed LDO is capable of producing a regulated output voltage of 1.3 V from a Li-Ion battery supply, with a dropout voltage of 200 mV while supplying a load current of 200 mA with 100pF on chip output capacitor allowing for greater power system integration for SoC applications.

Simulation results show that LDO with its reference achieves current efficiency of 71.78% and 99.95% for min and max load current respectively, its line and load regulation is 0.45mV/V and 2.9 m Ω respectively; the total current consumption is 19.6 μA from a 1.5v supply for light load.

Key words: Low Supply Bandgap Reference, Capacitor-free LDO regulator, current efficiency, quiescent current, and power supply rejection ratio.

SUMMARY

This dissertation demonstrates the design and simulation of new linear voltage regulator in CMOS technology.

This LDO regulator has some features:

- Enhanced Current efficiency.
- Enhanced PSRR at low frequency

The dissertation is divided into six chapters organized as follows:

Chapter One: I present an introduction to Power Management chips and its importance.

Chapter Two: We compare between the conventional linear and LDO regulators; the selected topology is LDO to avoid using of charge pump circuit which is used in the conventional linear regulator and avoid its switching noise.

It also classifies LDO's specifications into:

- Static Specifications.
- Dynamic Specification.
- High frequency Specifications.
- LDO Stability.

Then it describes the effect of each element's size on the performance and how to make proper design for LDO.

Chapter Three: I focus on the voltage reference which is used to provide stable dc bias voltage with limited current driving capabilities for the core of LDO.

This Chapter starts with its basic operation and describes CTAT and PTAT effect and how to get temperature stable output voltage then introduces historical overview of its architectures.

Also it describes the general operation of start-up circuits and classifies them into two categories:

- Continuous conduction start-up circuit.
- Non-continuous conduction start-up circuit.

Then it discusses its design parameters and the effect of each element size on its performance.

In the end, it introduces the general tradeoffs of voltage reference and its design methodology.

- **Chapter Four**: It introduces a new technique for LDO core to enhance its current efficiency by varying the quiescent current with its load current and compares its simulation results with conventional one.
- Chapter Five: We introduce proposed technique for the voltage reference to enhance its low frequency PSRR which is important to minimize the size of used filter between voltage reference and LDO core and compares its simulation results with conventional one.
- **Chapter Six**: I present the simulation results for the proposed LDO with varying process, supply and temperature then compares them with other architectures.
- **Appendix A**: Power Supply Rejection Ratio of Conventional LDO at low frequency is analyzed.
- **Appendix B**: Power Supply Rejection Ratio of BandGap Reference at low frequency is analyzed.

ACKNOWLEDGEMENT

الحمد لله رب العالمين

I would like to thank my supervisors *Prof. Dr. Hani F. Ragai*.

And special thanks go to *Dr. Emad Hegazi* for his continuous guidance, encouragement and help; he helped me throughout my entire design flow. I learned so many valuable things from him, but above all, he taught me how to be devoted to research and how to help others. I would like also to thank him for his patience.

Many Thanks go to my colleagues and friends for their support and help during my thesis. And special thanks for Amal Gaafar, Walaa Adel, Mai Naaom, and Dina Soliman.

Last but not least, I would like to thank my parents and sisters. Their patience, care, and love are what made me. I pray to God that I will always be a good faithful daughter and sister to them.

CONTENTS

		Title	Page
LIST OF FIGURES	}		viii
LIST OF TABLES			xi
LIST OF ABBREV	IATIONS	3	xii
LIST OF SYMBOL	\mathbf{S}		xiv
CHAPTER 1: INTR	RODUCT	ION	1
CHAPTER 2: VOLTAGE REGULATORS FUNDAMENTALS		5	
2.1	2.1 Types Of Voltage Regulators		5
	2.1.1	Switching Regulators	5
	2.1.2	Linear Regulators	7
	2.1.3	Cascaded Regulators	8
2.2	Conve	ntional Linear and LDO Regulator	8
	Archite	ectures	
2.3	LDO R	Legulator Parameters	11
	2.3.1	Static-state Specifications	11
	2.3.2	Dynamic-state Specifications	16
	2.3.3	High-Frequency Specifications	17
2.4	Genera	al Tradeoffs Of LDO	21
2.5	Design	Methodology For LDO	27
	2.5.1	Typical Functionality	27
	2.5.2	Typical Specs Compliance	28
	2.5.3	PVT Functionality and Specs	28
		Compliance	
	2.5.4	Monte Carlo (Process & Mismatch)	29
CHAPTER 3: BANDGAP REFERENCE FUNDAMENTALS		30	
3.1	Basic Op	eration	30
	3.1.1	Negative-TC Voltage	32
	3.1.2	Positive-TC Voltage	33
3.2	Histori	cal Overview	34
	3.2.1	Widlar Bandgap Reference	34
	3.2.2	Kuijk Bandgap Reference	36

	7	Γitle	Page
-	3.2.3	Brokaw Bandgap Reference	37
3	3.2.4	Low Supply Bandgap Reference	38
3.3 Star	rt-Up (Circuits	41
	3.3.1	General Operation	41
	3.3.2	Types of Start-Up Circuits	41
3.4 BGI	R Para	ameters	43
3	3.4.1	Temperature Coefficient	44
3	3.4.2	Current Consumption	46
	3.4.3	Start-up Time	47
	3.4.4	Loop Stability	48
	3.4.5	PSRR	50
3.5 Gen	eral T	radeoffs Of CMOS BGR	51
3.6 Des	sign M	ethodology For Voltage Reference	53
3	3.6.1	Typical Functionality	53
3	3.6.2	Typical Specs Compliance	55
3	3.6.3	J 1	55
		Compliance	
	3.6.4	Monte Carlo (Process & Mismatch)	55
CHAPTER 4: PROPOSED LDO CORE		56	
CHAPTER 5: PROPOS	SED B	ANDGAP REFERENCE	65
CHAPTER 6: SIMULA	TION	RESULTS of LDO and its	74
REFERI	ENCE		
6.1 Tra	nsisto	r-level Simulation	76
CONCLUSIONS & FU			79
APPENDIX A: POWER SUPPLY REJECTION OF		81	
CONV	ENTI	ONAL LDO	
APPENDIX B: POWER SUPPLY REJECTION OF			86
BAND	GAP F	REFERENC	
REFERENCES			94
ARABIC SUMMARY			-

LIST OF FIGURES

Fig.	Title	Dogo
No.	Titte	Page
1-1	MAX1502 standard-product power-management IC	2
	[MAXIM, 04]	
1-2	ADI AD20msp425 GSM chipset core power consumption	3
	profile	
2-1	Block Diagram of Switching Regulator	6
2-2	Linear Voltage Regulator Topologies	9
2-3	AC pole locations for conventional and LDO Regulator	10
2-4	Load Transient Response [Texas Instruments, 99].	12
2-5	Line Transient Response [Texas Instruments, 99]	13
2-6	Dropout Region [Texas Instruments, 99].	14
2-7	Load Transient Response of LDO Regulator [Texas	16
	Instruments, 99]	
2-8	Power Supply Rejection [Texas Instruments, 99]	17
2-9	Output Voltage Noise [Texas Instruments, 99].	18
2-10	Poles in Uncompensated Capacitor-less LDO	20
2-11	Bode plot of poles and zeros in Uncompensated Cap-Less	20
	LDO	
2-12	LDO topology of [Milliken, 07].	23
2-13	PSRR limitation in [Milliken, 07]	24
2-14	Low noise regulators with dual output [Hoon, 05]	24
2-15	LDO topology of [Kae Wong, 06]	25
2-16	Conceptual schematic of [Xin Ming, 12].	26
2-17	Schematic of [Yat-Hei, 06]	27
3-1	Positive and Negative Temperature Coefficient of	31
	BandGap Reference	
3-2	Widlar BandGap Reference	34
3-3	Basic Kuijk Voltage Reference Circuit	37
3-4	Brokaw BandGap Reference	38

Fig.	Title	Page
No.	1440	- ugc
3-5	BGR using Resistor Divider Network [Banba, 99].	39
3-6	Low voltage BGR as presented in [Waltari, 00].	40
3-7	Continuous Conduction Start-Up Circuit	42
3-8	Start-Up Circuit as presented in [Waltari, 00].	43
3-9	Variation of Output Voltage with Temperature	44
3-10	Start-up time	47
3-11	+ve and -ve Feed-Back Loop	48
3-12	Poles and Zeros in Opamp of BandGap Circuit	49
3-13	BandGap reference topology of [Sanborn, 07]	52
3-14	VCVS Connection in I-Tstable circuit	53
4-1	problem limitation of current efficiency in conventional	57
	LDO regulator	
4-2	Proposed LDO Topology	58
4-3	Quiescent current and current efficiency for light load	60
	current	
4-4	MC simulation results of current efficiency for minimum	61
	load current	
4-5	MC simulation results of current efficiency for maximum	61
	load current	
4-6	layout Constraints in LDO Core	63
5-1	The basic Idea of [Ashrafi, 08] and [Mehrmanesh, 03]	66
5-2	PSRR vs. Vout at low freq	67
5-3	PSRR vs. Temperature	68
5-4	Proposed implementation of the reference circuit with	69
	improved PSRR	
5-5	PSRR of the output voltage at low frequency vs.	70
	temperature	
5-6	Variation of output voltage for conventional and proposed	70
	reference circuit	
5-7	MC simulation results of PSRR at 10Hz	71

Fig.	Title	Dogo
No.	Title	Page
5-8	Layout Constraints of Voltage Reference	73
6-1	Modified LDO and Modified Voltage Reference	74
6-2	MC simulation results of the output voltage of LDO	76
A-1	Conventional LDO Regulator	82
A-2	Small signal model of LDO due to Vbg only	82
A-3	Small signal model of LDO due to Vdd at the core	84
B-1	BGR using Resistor Divider Network	86
B-2	Two stage OpAmp	87
B-3	Small-signal model of First stage of OpAmp	87
B-4	Small-signal model of second stage of OpAmp	88
B-5	Small-signal model of v ₊ in the core	90
B-6	Small-signal model of v- in the core	91
B-7	Small-signal model of the output branch	92

LIST OF TABLES

Table No.	Title	Page
2-1	Effect of devices size on performance of cap-less LDO	22
3-1	Effect of devices size on performance of current mode	51
	BGR	
4-1	Typical Performance Comparison for LDO_Core	62
5-1	Typical Performance Comparison for Voltage Reference	72
6-1	The Size of Devices in Modified Voltage Reference and	75
	LDO_CORE	
6-2	PVT Simulation Results	77
6-3	Performance Comparison with Other LDOs	78

LIST OF ABBREVIATIONS

LDO : Low Drop-Out

CTAT : Complementary To Absolute Temperature

PTAT : Proportional To Absolute Temperature

PVT : Process ,Voltage and Temperature

PSRR : Power Supply Rejection Ratio

BGR : BandGap Reference

PMIC : Power Management IC

CDMA : Code Division Multiple Access

ESR : Equivalent Series Resistance

LNR: Line Regulation

LDR : Load Regulation

TC : Temperature Coefficient

RMS : Root Mean Square

OPAMP : Operational Amplifier

SOC : Silicon On Chip

RHP : Right-Hand Plane

LHP : Left-Hand Plane

UGF : Unity-Gain Frequency

BW : Bandwidth

GBW : Gain-Bandwidth

PM : Phase Margin

OLG : Open Loop Gain

PPM : Parts Per Million

VCVS : Voltage Controlled Voltage Source

SIP : System in Package

IEEE : Institute of electrical and electronics engineers