Vascular Injury In Civilian Trauma

A Study

Submitted for Partial Fulfilment of Master Degree In General Surgery

> By Hamdy Abdel Azeem Abo El Neel *M.B.,B.CH.*

Under Supervision Of

Prof. Dr./ Ali Saddek Sabbour

Professor of General & Vascular Surgery Faculty of Medicine - Ain Shams University

Ass. Prof. Dr./ Ahmed Farouk Abd El Mohsen

Assistant Professor of General & Vascular Surgery Faculty of Medicine - Ain Shams University

Dr./ Mohamed Abd El Monem Abd El Salam Rizk

Lecturer of General & Vascular Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University

> > 4.14

<u>INDEX</u>

	Page
Introduction	1
Aim of Essay	0
Historical Background Of Vascular Trauma & its	4
Management	
General Concepts Of Vascular Trauma	٢٥
Epidemiology Of Vascular Trauma	۲٥
Biomechanics of Injury	۲۸
Types of Injury	۳٠
General Clinical Presentations	۳۱ ۳۱
Investigations	۳۳
General Concerns of Management	۳۷
Vascular Injury According To Anatomical Regions	٤٥
Head and Neck	٤٥
Thorax	۹۰
Abdomen	١٣٠
Extremity	١٨٥
Summary	۲۳.
•	
References	۲۲۲
Arabic Summary	

Acknowledgement

First and above all thanks for **ALLAH** who enabled me to achieve this work.

I would like to express my utmost and sincere gratitude and cordial appreciation to **Dr./ Ali Saddek Sabbour,** Professor of General & Vascular Surgery, Faculty of Medicine, Ain Shams University, for his continuous encouragement, generous assistance and valuable guidance during the whole period of this work.

I am particularly indebted to **Dr./ Ahmed Farouk Abd El Mohsen,** Assistant Professor of General & Vascular
Surgery, Faculty of Medicine, Ain Shams University, who
spared no efforts in helping me through this essay, thanks
for his keen supervision and follow up.

I wish to express my deepest thanks and gratitude to **Dr./ Mohamed Abd El Monem Abd El Salam Rizk,**Lecturer of General & Vascular Surgery, Faculty of Medicine - Ain Shams University, for his valuable help and sincere guidance.

LIST OF ABBREVIATIONS

ADI	
ABI	: Ankle-brachial index
ACS	: Abdominal compartment syndrome
ALS	: Advanced life support
BAI	: Blunt aortic injury
BCVI	: Blunt cerebrovascular injury
CBF	: Cerebral blood flow
CCA	: Common carotid artery
CFD	: Color-flow duplex
CIA	: Common iliac artery
CIV	: Common iliac veins
CSFD	: Cerebrospinal fluid drainage
CT	: Computed tomography
CTA	: Computed tomographic angiography
DSA	: Digital subtraction angiography
EC-IC	: Extracranial-to-intracranial
ePTFE	: Expanded polytetrafluoroethylene
FA-FV	: Femoral artery-femoral vein
GCS	: Glasgow Coma Scale
IADI	: Intra-arterial drug injection
IAP	: Intra-abdominal pressure
ICA	: Internal carotid artery
ICU	: Intensive care unit
IMA	: Inferior mesenteric artery
IVC	: Inferior vena cava
KE	: Kinetic energy
LA-FA	: Left atrium-femoral artery bypass
M	: Mass
	: Mobile Army Surgical Hospital
MDCT	: Multidetector CT
MRA	: Magnetic resonance angiography
MRI	: Magnetic resonance imaging
PTFE	: Polytetrafluoroethylene

LIST OF ABBREVIATIONS (CONT.)

SCM	: Sternocleidomastoid muscle
SMA	: Superior mesenteric artery
SMV	: Superior mesenteric vein
SPECT	: Single-photon emission computed
	tomography
TEE	: Transesophageal echocardiography
TEVAR	: Thoracic endovascular aortic repair
V	: Velocity
VAIs	: Vertebral artery injuries
YPLL	: Years of productive life lost

LIST OF TABLES

	Page
Table \: Contributors to vascular surgery	١٦
Table 7: Incidence of arterial injuries in combat	۲۱
Table *: Incidence of Vascular Injuries in Military Conflicts and Civilian Practice	۲٧
Table [£] : The correlation between injury type and clinical presentation	٣١
Table o: Signs of traumatic vascular injury	٣٣
Table 7: Screening Criteria for Blunt Cerebrovascular Injury	٥٩
Table Y: Blunt Cerebrovascular Injury Grading Scale	٦١
Table ^: Injuries Associated with Blunt Aortic Injury	٠٤
Table 9: Amputation Rates in Association with Perioperative Risk Factors in Blunt Popliteal Artery Trauma	١٦

LIST OF FIGURES

	Page
Figure 1: The Ebers Papyrus (ca. 1000 BCE) from Ancient Egypt	
Figure 7: Galen	۸
Figure $^{\circ}$: Artist's concept of the bec de corbin, developed by Pare and Scultetus in the mid-sixteenth century. It was used to grasp the vessel prior to ligating it	3
Figure 4: Tenaculums	۱۱
Figure o: The first arterial repair performed by Hallowell, acting on suggestion, by Lambert in ۱۷09.	
Figure 7: "The first successful end-to-end arterial anastomosis in man by Murphy In ۱۸۹7	
Figure V: Postoperative ward in a Mobile Army Surgical Hospital (MASH)	
Figure A: Anatomic zones of the neck for penetrating neck injuries	
Figure ⁹ : This patient sustained a high-velocity gunshot wound to zone I of the neck	
Figure : Three-dimensional CTA reconstruction with bone subtraction demonstrates occlusion of the right internal carotid artery	t
Figure '1: Penetrating vertebral artery injury secondary to a stab wound at the base of the left neck	
Figure ۱۲: Blunt subclavian artery transection	۸۱
Figure '\": Blunt isthmic aortic injury as visualized by MDCT	٩٤
Figure 15: Blunt isthmic aortic injury seen in Figure 17 after thoracic endovascular repair as visualized by MDCT (A), intraoperative angiography (B), and three-dimensional CT reconstruction (C). Additional stemplacement in the left common carotid artery was performed to ensure left carotid patency owing to the short proximal landing zone. Note the wire in the left common carotid artery in the angiographic image (B)	

		Page
Figure \	P: Demonstration of the putative forces acting through the aorta during blunt traumatic injury	١
Figure \	1: Intra-operative setup for distal aortic perfusion using left atrial—to—descending aortic bypass	١١.
Figure \	Traumatic aortic transection before (A) and after (B) endovascular stent-graft repair. The stent's proximal margin is distal to the left subclavian artery	111
Figure \	A: Logistic regression curves show a reduction in the risk of paraplegia or paraparesis associated with cerebrospinal fluid drainage	110
Figure \	Properties of the descending thoracic aorta. A, Clamp and sew. B, Passive distal aortic perfusion. C, Active distal aortic perfusion.	171
Figure Y	*: Penetrating injury to the superior vena cava and ascending aorta. Before repair, full heparinization should be achieved, and cardiopulmonary bypass should be considered. A, Injury to the superior vena cava, innominate artery, and ascending aorta. B, Repair of the superior vena cava. C, Repair of the innominate artery and ascending aorta.	170
Figure Y	P: Bypass principle used to repair blunt injury to the proximal innominate artery—aortic arch. A, Blunt injury to the innominate artery. B, Vascular control of the injury and creation of a proximal ascending aorta—innominate bypass anastomosis. C, Completed ascending aorta—innominate bypass with oversewing of the innominate artery stump	1
Figure Y	T: Retroperitoneal vascular zones. Zone \includes the midline vessels from the aortic hiatus to the sacral promontory; zone \includes includes the paracolic gutter and the kidneys; and zone \includes includes the pelvic retroperitoneum. IMA, inferior mesenteric artery; IVC, inferior vena cava; SMA, superior mesenteric artery.	171

		Page
Figure ۲۳:	The pelvic location of the missile on the abdominal radiograph, combined with hypotension, is highly suggestive of an iliac vascular injury	175
Figure Y 2:	A, CT of a traffic accident victim shows a large pelvic hematoma (circle) due to injury of the right common iliac artery. B, CT scan with intravenous contrast material in a patient who fell from a significant height shows poor contrast uptake in the right kidney due to occlusion of the renal artery	180
Figure Yo:	Postoperative CT scan of a patient with a gunshot wound shows an abdominal aortic false aneurysm (circle)	١٣٦
Figure ۲٦:	Postoperative CT scan of a patient with a gunshot wound shows an aortocaval fistula	١٣٦
Figure YY:	A °-year-old child presented with a severe pelvic fracture and absent right femoral pulse. Angiography shows a complete occlusion of the right common iliac artery	١٣٧
Figure YA	: Intravascular ultrasound shows a false aortic aneurysm (Pseudo A.) at the level of the superior mesenteric artery (SMA; arrow) after a gunshot wound to the aorta	150
Figure ۲۹:	Medial left visceral rotation provides good exposure of the supramesocolic aorta and the origin of the celiac axis, superior mesenteric artery (SMA), and left renal vessels	1 £ £
Figure **:	Medial rotation of the right colon and hepatic flexure and Kocher mobilization of the duodenum and pancreas provide excellent exposure of the inferior vena cava (IVC) and the origins of the renal veins	150
Figure 71:	Temporary arterial shunt for damage control in a hemodynamically unstable patient with a gunshot wound and complete transection of the iliac artery (circle)	١٤٨

		Page
Figure **:	Temporary closure of the abdomen using vacuum dressing techniques. After damage-control procedures, the abdomen should never be closed primarily because of the risk of abdominal compartment syndrome	١٤٨
Figure **:	Angiography shows a dissecting aneurysm of the abdominal aorta (arrows) after a motor vehicle accident. Management with an endovascular stent was successful	101
Figure 75 :	A, Traffic accident victim with a large hematoma at the base of the mesentery found at laparotomy. This is suggestive of a superior mesenteric artery (SMA) injury and needs to be evaluated by angiography, preferably postoperatively. B, Postoperative angiography shows a large SMA false aneurysm	101
Figure *o:	Anatomy of the hilum of the right kidney. Note the position of the renal artery (RA; black ligature) behind the renal vein (RV; white ligature) and inferior vena cava (IVC). UR, ureter	171
Figure 77:	Angiography shows an intimal tear of the right renal artery (circle) due to a fall from a height. Management with an endovascular stent was successful	177
Figure **:	A, CT shows a nonfunctioning left kidney after a traffic injury. B, Angiography shows complete thrombosis of the renal artery (circle). C, Revascularization with an angiographically placed endovascular stent	175
Figure ۳۸:	Anatomy of the iliac vessels. Note the confluence of the two common iliac veins (CIV) behind the proximal right common iliac artery (CIA; large circle). Also note the position of the ureter over the bifurcation of the common iliac artery (small circle). IVC, inferior vena cava	

			Page
Figure	٣٩:	A, Right common iliac artery thrombosis in a \\^-year-old patient diagnosed many months after a motor vehicle accident. B, Management with an endovascular stent was successful	١٧.
Figure	٤•:	Large hematoma in the pelvis (circle) after a gunshot wound. This is highly suggestive of an iliac vascular injury, and proximal control should be obtained as soon as possible	١٧٢
Figure :	٤١:	Atriocaval shunt for severe retrohepatic inferior vena cava (IVC) injuries. An endotracheal tube is placed through a purse-string suture in the right atrial appendage, and the cuff is inflated above the renal veins. A tourniquet is applied in the intrapericardiac IVC. Note the extra holes in the endoatrial part of the tube. This technique should be considered when liver packing does not control hemorrhage	١٧٨
Figure	٤٢:	Diagnostic algorithm for extremity arterial trauma. ABI, ankle-brachial index	197
Figure	٤٣:	Popliteal artery shotgun injury with a small false aneurysm (arrow) that was managed nonoperatively	197
Figure	٤٤:	Large peroneal artery false aneurysm (left) that was successfully treated by coil embolization (right)	199
Figure	٤٥:	Retroperitoneal exposure for proximal control of the iliac and proximal common femoral arteries	717
Figure	٤٦:	Posterior approach for a penetrating popliteal injury behind the knee	712

INTRODUCTION

Peripheral vascular injuries account for $\wedge\cdot$? of all cases of vascular trauma, and the great majority of patients are young males. Most of the injuries involve the lower extremities. The most common injury mechanism is cut and stab wounds (9,9) (*Randall et al.*, 1,9). But there is a regional difference e.g. in Australia, Most injuries are caused by high-velocity weapons (9,7 /, to 9,7 /), followed by stab wounds (9,7 //, to 9,7 //) and blunt trauma (9,7 ///, to 9,7 ///). The incidence of vascular trauma in the military is comparable to that in the civilian population and varies from 9,7 //////, to 9,7 ////// of injured patients (*Gupta et al.*, 1,9,9).

In the civilian setting, although a penetrating mechanism predominates, the relative incidence of blunt injuries increases (*Frykberg*, 1997). The Most common arterial injuries are partial lacerations and complete transections. In general, complete transections lead to retraction and thrombosis of proximal and distal ends of the vessel with subsequent ischemia. in contrast, partial lacerations cause persistent bleeding or pseudo aneurysm formation. Partial lacerations as well as contusions may be accompanied by intimal flaps which may progress to thrombosis. Small Arterial contusions with limited intimal flaps may not cause distal hemodynamic compromise and may be undiagnosed. Concomitant arterial and venous injuries may lead to arteriovenous fistula formation (*Dennis et al.*, 1994).

Extremity arterial injuries have varied clinical presentations. A minority of patients present with obvious clinical evidence, or hard signs, of an arterial disruption, such as pulsatile external bleeding, an enlarging hematoma, absent distal pulses, or an ischemic limb. For patients with overt signs of arterial injury, immediate surgical exploration in the operating room, without further diagnostic testing, is preferred. When arteriography is required, an intraoperative arteriogram is usually sufficient to identify the location and extent of injury and guide the surgical repair (*Patel et al.*, **.*).

Greater than 9.% of injuries to the great vessels of the thorax are caused by penetrating trauma. Gunshots, stab wounds, shrapnel, and even iatrogenic misadventures are frequently reported causes (*Mattox et al.*, 1919).

In the thorax, The innominate artery, pulmonary veins, venae cavae, and thoracic aorta (most common) are susceptible to blunt injury. Aortic blunt injuries usually involve the proximal descending aorta, but injuries to other segments such as the ascending aorta or transverse arch ('''.' to '''.''), middistal descending aorta ('''.''), and even multiple sites (''''.'' to '''.'') have been reported (*Williams et al*, '''.'').

Blunt carotid artery disruption accounts for about $\frac{\pi}{2}$ to $\frac{\pi}{2}$ of all carotid injuries. The most commonly injured structures in the neck are the blood vessels. The incidence of major vascular trauma following a penetrating neck injury is $\frac{\pi}{2}$. (Beitsch et al., 1992).

Many patients with major abdominal vascular injuries die at the scene and never reach medical care. Of the patients who are transported to hospitals, about '½' lose vital signs during transportation or in the emergency department. The clinical presentation depends on the injured vessel, the size and type of the injury, the presence of associated injuries, and time elapsed since the injury (Asensio et al., '``...).

Selective digital subtraction angiography (DSA) is the diagnostic "gold standard" for screening patients with suspected arterial injury. DSA has several limitations that make it a difficult diagnostic tool. First and foremost, it is an invasive procedure with technical limitations and a complication profile (Biffl et al., 199A).

Computed tomography is the modern workhorse for trauma evaluation and should be the initial diagnostic step in patients with penetrating injuries but no hard signs of vascular or aerodigestive injury. Contrasted axial imaging with reformatting software allows an exact determination of the injury track, vascular injuries, proximity to the aerodigestive organs, spinal fractures and cord involvement, computed tomographic angiography (CTA) has a 9.% sensitivity and 9.% specificity for vascular injuries that require treatment (Nunez et al., 9.%).

Noninvasive vascular imaging, color-flow duplex (CFD) ultrasonography has been suggested as a substitute for or complement to arteriography. CFD has several obvious