Targeting Tyrosine Kinase and Mammalian Target of Rapamycin inhibitors in the Treatment of Breast Cancer.

Essay

Submitted for partial fulfillment Of the Master Degree in Radiation Oncology and Nuclear Medicine

Mona Kamal Jomaa M.B., B.Ch.

Supervised by

Prof. Soheir Sayed Ismail

Prof. and head of department of Radiation Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Hesham Ahmed Elghazaly

Ass. Prof. of Radiation Oncology and Nuclear Medicine
Faculty of Medicine
Ain Shams University

Dr. Ramy Refaat Youssef Ghali

Lecturer of Radiation Oncology and Nuclear Medicine
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University 2009

List of figures

Table	Subject						
1	Histology of invasive breast carcinomas						
2	Steps of microarray						
3	Molecular subtype identification	11					
4	The TAILORx and MINDACT studies	14					
5	Prognostic value of ER status for disease-free survival	20					
6	Estrogen receptor: structure and mechanism of action	21					
7	Cross talk between ER and growth Factors	22					
8	VEGF signaling	25					
9	Mammalian apoptotic pathway	28					
10	Signal transudation pathway of tyrosine kinases	30					
11	RTKs families and signaling pathways.	34					
12	Schematic diagram of the structure of an Erb B receptor.	37					
13	TKI dysfunction	39					
14	GFR signaling in tumor cell	41					
15	schematic representation of the structure of MAPK pathway	42					
16	Schematic overview of MAPK pathway	42					
17	RAS\RAF\MEK\ERK pathway	43					
18	Structure of HERfamily receptors	45					
19	Members of HER family	46					
20	Conformational changes of the receptor up on binding of the ligand.	47					
21	The effects of HER receptor dimerization and subsequent activation and initiating downstream signaling.	48					
22	HER family receptors internalization.	49					
23	HERsignaling dysfunction in solid tumors	50					

Fig.	Subject						
24	Targeting HER signaling pathways	53					
25	HER2 status in 4 samples of breast tumor tissue	56					
26	Kaplan-Meier curves	57					
27	HER3 plays a distinct role in the HER family signaling network.	60					
28	HER2 and HER3 heterodiminrazation	61					
29	HER4 is a part of the highly complex signaling network	62					
30	The angiogenic balance.	64					
31	VEGF-Receptor (VEGFR)	65					
32	Raf is a downstream mediator of growth-factor signaling	67					
33	The different strategies to inhibit angiogenesis	68					
34	Growth factor receptor-driven signaling pathways and target-based agents in clinical development in breast cancer.	71					
35	Mechanism of action of current therapies for HER2-expressing breast cancer	78					
36	Consolidated standards of Reporting Trials (CONSORT) chart of the Herceptin Adjuvant (HERA) Trial.	86					
37	The design of the Fin Her study	90					
38	The e Tag Assay	94					
39	Diagnostic protocol for predicting patient response to combination Herceptin and chemotherapy.	96					
40	Mechanism of action of pertuzumab	100					
40	ivicenalish of action of pertuzullat	100					

Fig.	Subject						
41	Phase III CLEOPATRA	102					
42	Mechanism of action of Lapatinib	105					
	Proposed mechanisms of acquired resistance:	106					
43	crosstalk with insulin-like growth factor						
4.4	receptor EGF100151 trial	100					
44 45	EGF 100151 trial EGF 100151 trial result	109					
45	EGF 100151 trail result	109					
46	Signaling downstream of HER2/HER3 dimer formation, Abbreviations	113					
47	VEGF inhibition results from three main mechanisms						
48	The VEGF family	115					
49	AVADO trial design.	117					
50	AVADO trial result	117					
51	Ribbon 1 trial design	119					
52	ECOG 2100 trial design	120					
53	ECOG 2100 trial result	121					
54	Mechanism of action of Motesanib	127					
55	The combination of motesanib plus paclitaxel or docetaxel :Study design	128					
56	Genomic and nongenomic action of ER	146					
57	Subsets of Er — Breast cancers and potential therapeutic interventions.	148					
58	The Integration of Growth Factor and ER Signaling	149					

Fig.	Subject	Page						
59	The signal transduction pathways leading to	150						
39	Ser167 phosphorylation.							
60	Noval crosstalk between ER&GFR signalling							
61	Growth factor receptor signaling and tumor estogen receptor status.	152						
62	IGF Targeing Strategies.	157						
63	BMS-754807 Is Synergistic in Vitro and In	158						
64	Vivo with hormonal therapies Proposed mechanisms of acquired resistance: crosstalk with insulin-like growth factor receptor							
65	ALTTO trial design	167						
66	Immunohistochemical analysis of paraffinembedded human breast carcinoma, showing cytoplasmic localization using mTOR (7C10) Rabbit mAb	170						
67	Western blot analysis of extracts from 293, A431, COS, C6, and C2C12 cells using mTOR (7C10) Rabbit mAb							
68	Nutrients and growth factors converge to regulaste the mTORC1 complex in mammalian cells							
69	The mammalian target of rapamycin (mTOR) signaling network.	174						
70	mTOR raptor may activate mTOR activity in responce to nutrients	176						
71	mTOR signaling pathway	178						

Fig.	Subject						
72	Rapamycine regulated gene expression.						
73	mTOR pathway regulation						
74	mTOR activation in HER-2-positive disease						
75	Combination With Trastuzumab :Clinical hypothesis	197					
76	Combination of RAD001 and carboplatin						

List of Tables

Table	Subject						
1	Frequency and outcome of histological types	6					
1	of invasive breast carcinoma						
2	Results of the Kruskal – Wallis test;refinement	7					
	of breast cancer by IHC						
3	Bcl-2 family members	28					
4	Protein kinases and their functions.	32					
5	Tyrosine Kinase Targets in Solid Tumors	35					
6	Clinical trails dete ect relation between HER and breast cancer	58					
7	Randomized trials of target-based agents plus	71					
,	chemotherapy in metastatic breast cancer.						
	Randomized trials of target-based agents	74					
8	incombination with endocrine therapy in						
	metaststic breast cancer	0.4					
9	Summary of efficacy data North American trials	84					
10	Efficacy End-point Events (international-to – Treat Groups)	87					
11	Summary of efficacy data HERA trial	88					
12	Combination of trastuzumab and pertuzumab	101					
13	Ribbon 1 trial results: Overall Survival	119					
14	Letrozole + lapatinib :Response Rate	156					
15	Cediranib + fulvestrant : overall response	160					
16	Sumary of tumor response with sunitinib + trastuzumab.	169					
17	sunitinib + trastuzumab:Cardiac safety overview	169					
18	Abnormalities in the P13K/AKT/mTOR pathway Asociated with Malignancies	179					

List of Tables (Cont.)

Table	Subject						
19	Doses and Schedules of Sirolimus and its Analogues						
20	Selected Downstream Effects of Rapamycin	181					
21	Rapamycin metagene index						
22	Efficacy of Rapamycin Analogs in Selected Clinical Trials						
23	Everolimus in Combination With Trastuzumab :Summary of overall efficacy results	199					
24	Summary of efficacy results in patients with taxane- and trastuzumab-resistant tumors	199					

Introduction

The American Cancer Society consider breast cancer the most commonly diagnosed type of cancer among women in 2009 .Breast cancer alone is expected to account for 27% of all new cancer cases among women(**Jemal A. et al.,2009**).

In Egypt, Breast cancer representing 18,9% of total cancer cases (35,1% in women among the Egypt national Cancer Institute (NCI) series of 10556 patients during the year 2001(Elatar I.,2004).

Breast cancer account for 25% of total cancer cases during 2009 in Ain Shams Cancer Institute.

Breast cancer is no longer considered a homogeneous disease. This has led to shift breast cancer treatment to targeted therapies (**Perou M. et al., 2000**).

Despite advances in early detection of breast cancer, adjuvant therapy of localized disease, and palliative therapy of metastatic disease, breast cancer remains a significant public health problem. Cytotoxic chemotherapy remains an important part of optimal therapy for patients in all stages of disease, but it is limited by toxicity, nonspecificity, and inevitable development of resistance (**Timothy J. et al., 2005**).

The question of whether to offer adjuvant chemotherapy to patients with early-stage breast cancer continues to challenge clinicians on a daily basis .These patients could be spared the trauma of receiving

chemotherapy, but more reliable prognostic markers are still needed to aid our therapy decision making (**Piccart-Gebhar M. et al.,2007**).

By understanding molecular profiling of tumors, the field of personalized medicine will expand and will lead to more effective treatment of cancer (Chustecka Z., 2009).

"The Hallmarks of Cancer," provide a framework for approaching these novel therapies by targeting growth factor pathways, inhibiting angiogenesis, evading apoptosis, and targeting mTOR (mammalian target of rapamycin) (Hanahan D. et al.,2000).

Cell growth, metabolism, death, differentiation, movement, and invasion are all controlled by intracellular signaling pathways. These pathways are initiated by ligands binding to, and activating, their receptors (Sara A., 2008).

Tyrosine kinase family (ErbB1/EGFR, ErbB2/Her2, ErbB3, and ErbB4), which regulates cell growth and differentiation (**Burgess W. et al.,2003**).

HER signaling pathways are extremely complex, they can be targeted using several different strategies. Ligands that bind to HER receptors, the extracellular ligand-binding domain of a HER family receptor, the intracellular tyrosine kinase domain of the receptor, and downstream molecular signals can all be targeted (Sliwkowski X. et al., 2004).

Binding of soluble epidermal growth factor ligands to their cognate ErbB receptor induces homodimerization or heterodimerization of ErbB2 and autophosphorylation downstream growth and survival signaling networks (**Hynes E. et al.,2005**).

Trastuzumab and lapatinib are effective in patients with breast cancer that overexpresses ErbB-2. The anti-vascular endothelial growth factor-A mAb bevacizumab is approved for treatment of patients with metastatic breast cancer. In addition, preclinical data suggest that signaling inhibitors can prevent or overcome resistance to endocrine therapy in estrogen receptor positive breast cancer (**Normanno N. et al.,2009**).

Targeting the epidermal growth-factor receptor (EGFR) family is a main strategy for drug development in the treatment of metastatic breast cancer. One approach is to inhibit the cross-talk among different EGFRs by inhibiting multiple receptors at once (Kellie J. et al.,2009).

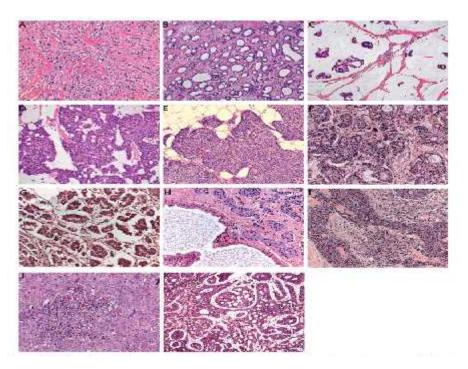
A tumor cell's survival is determined not only by the rate of proliferation but also by the rate of cell death. Apoptosis is a physiologic response of normal cells to stressors. The success of cancer cells, in part, is attributed to acquired resistance to apoptosis (Campbell E.et al.,2004).

One strategy includes alteration of the phosphoinositide 3- kinase (PI3K)/AKT signaling pathway which is involved in mediating cell growth and proliferation.

Signaling through this pathway regulates the serine-threonine kinase (mTOR) which is important for regulation of the cell cycle (Chow Y. et al., 2007).

(mTOR) inhibitor, inhibiting transduction of prolifrative and survival signals. Rapamycin causes a well-documented arrest of the cell cycle in G1 phase in many cancer cell lines including cancer breast (**Leung B. and Hye Choi J., 2007**).

Based on the clinical and preclinical data, inhibitors of mTOR are promising candidates for breast cancer therapy and should be studied in combination with HER inhibitors as well as endocrine therapy, based on cross-talk between the ER pathway and the PI3K/Akt/mTOR pathway (Baselga J. et al, 2004).


(mTOR) pathway is involved in the development of tumor resistance to endocrine therapy in breast cancer cell lines and represents an attractive target for pharmacologic intervention (Generali D. et al., 2008).

Aim of the work

The aim of this study is to review the different tyrosine kinase inhibitors and m TOR inhibitors; their mechanism of action and their evolving role as targeted therapy in the treatment of breast cancer.

Molecular Biology of Breast Cancer

Invasive breast cancers are heterogeneous group of tumors that show a wide variation as regard their clinical presentation, behavior, and morphological spectrum. At least 18 different histological breast cancer types (ie pathological entities) are described by the World Health Organization (WHO) figure (1) (Tavassoli F. et al., 2003).

Fig 1. Histology of invasive breast carcinomas. Representative micrographs of special type breast cancers: (A) invasive lobular carcinoma, (B) tubular, (C) mucinous A, (D) mucinous B, (E) IDC with osteoclastic giang cells, (G) micropapilliary, (H) apocrine, (I) metaplastic, (J) medullary, and (K) adenoid cystic carcinoma(**Weigelt B et al,2008**)

Current classification systems are descriptive, based on morphological entities that have been shown to have prognostic implications, **Table(1)**.

Table (1): frequency and outcome of histological types of invasive breast carcinoma(Weigelt B et al,2008)

Histological type of invasive breast carcinoma	Frequency	10-year overall survival rate		
Invasive ductal carcinoma not otherwise	50-80%	35-50%		
specified (IDC NOS)				
Invasive lobular carcinoma (ILC)	5-15%	35-50%		
Adenoid cystic carcinoma	0.1%	90-100%		
Apocrine carcinoma	0.3-4%	Like IDC NOS		
IDC with osteoclastic giant cells	Unknown	Like IDC NOS		
Medullary carcinoma	1-7%	50-90%		
Metaplastic carcinoma	<5%	Unknown		
Micropapillary carcinoma	<3%	Unknown		
Mucinous carcinoma	<5%	80-100%		
Neuroendocrine carcinoma	2-5%	Unknown		
Tubular carcinoma	1-6%	90-100%		

For the success of targeted therapies and individualised medicine. Anew classification system is required (**TomasC.** et al,2010).

Refinement of breast cancer classification by

1. Molecular characterization of histological special types:

Results of the Kruskal – Wallis test revealed comprehensive characterization of a series of 11 different histological special-type breast carcinomas by immunohistochemistry and gene expressieon profiling in an

attempt to refine breast cancer classification and improve patient stratification shown in Table(2). (Tavassoli F. et al.,2003)

Table 2. Results of the Kruskal – Wallis test : refinement of breast cancer by IHC(Weigelt B et al,2008)

Antibody	Histological Subtype										
	*poorise	е Мистои	s A Mudinous	8 Neuroandcorine	IDC Oswo	t/icrossp	Aderoid	Medulary	Metaplastic	H.C	Tubu
ER	42	71	31	61	85	81	23	23	23	67	68
E-cadhern	59	63	66	63	69	63	63	68	55	17	68
CK 19	54	743	5/	69	54	件	26	33	24	75	69
CD1*7	47	47	47	47	47	47	103	61	72	42	47
AR.	87	65	31	67	47	68	28	28	28	Œ	E7.
EM4	50	43	61	47	82	104	12	62	31	60	63
CK 8/18	36	60	66	66	56	65	3E	33	35	65	66
PR	54	72	62	84	96	64	34	34	34	63	63
Virte: tip	45	55	45	56	45	45	83	74	78	4!	45
\$103	36	54	36	36	36	36	70	88	74	60	51
Synaptochivsin	51	62	86	69	51	51	51	51	51	53	6*
GCD+P-15	56	34	86	53	34	40	34	34	34	36	52
CK 14	67	63	46	43	43	48	76	64	79	60	49
CK 5/6	52	48	43	43	54	64	85	82	65	53	43
P63	51	56	51	51	51	51	81	62	63	51	51
Chromogranin	\$5	55	57	51	55	55	55	56	55	55	55
CE4	56	63	53	66	7.0	67	47	27	49	95	53
CD56	47	52	58	59	47	47	47	83	66	SJ	69
P33	70	45	46	53	75	63	53	47	56	££	63
EGFR	54	55	55	55	55	55	55	60	63	5ŧ	55
CD10	61	52	56	52	52	52	54	57	61	86	52
HER2	22	58	50	53	53	59	53	53	53	SE	53

• The immunohistochemical staining patterns and gene expression profiles of the ER-positive tumors :apocrine,mucinous,neuroendocrine,micropapillary and invasive ductal carcinoma with osteoclastic gaint cell tumors were highly similar. Gene networks of invasion and proliferation to be down-regulated in these carcinomas, which may explain the low incidence of metastasis in such patients (Schnitt S. and Guidi A., 2004).