

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Department of Physics Faculty of Science Benha University

Utilization of Polymeric Composites for Neutrons and Gamma-Rays Attenuation

A Thesis Submitted for the Ph.D. Degree

By

Magdeldin Adham Ahmed El-Sarraf

To

Department of Physics Faculty of Science

Benha University

Under supervision of

Prof. Dr. M. I. El-Zaiki Prof.

Prof. Dr. F. A. Gaber

Prof. of Nuclear Physics,

Faculty of Science,

Benha University

Prof. of Nuclear Engineering,

NCNRC,

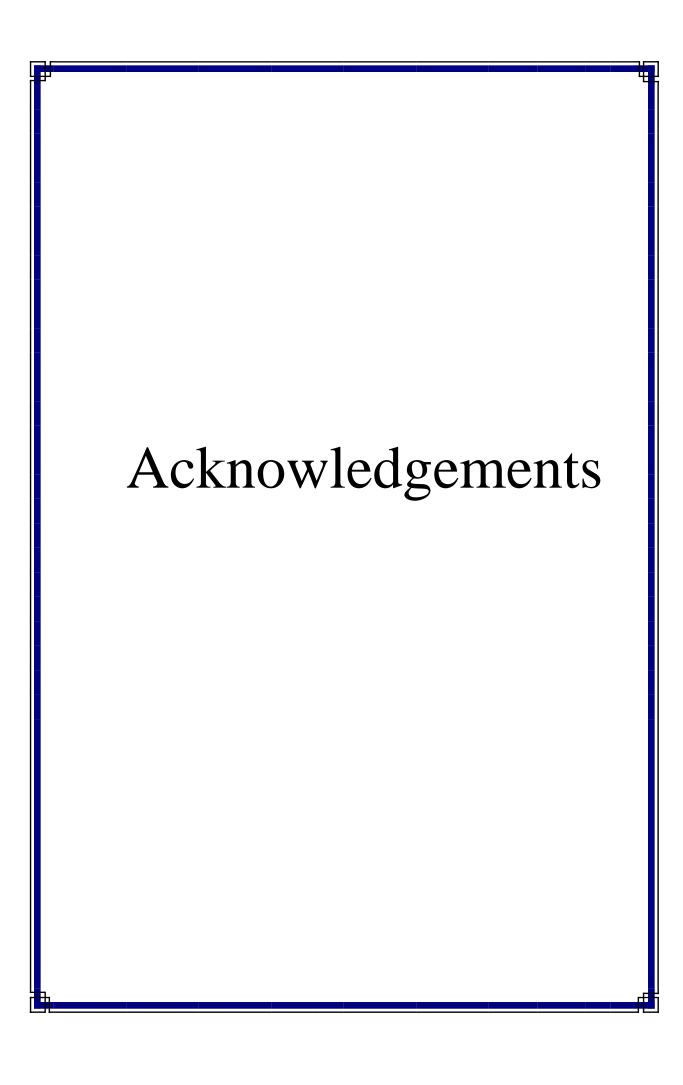
Atomic Energy Authority

Prof. Dr. A. El-Sayed Abdo

Prof. Dr. M. A. Abdul-Walab

Prof. of Nuclear Physics,

NRC,


Atomic Energy Authority

Prof. of Nuclear Engineering,

NCNSRC,

Atomic Energy Authority

Favnt 2011

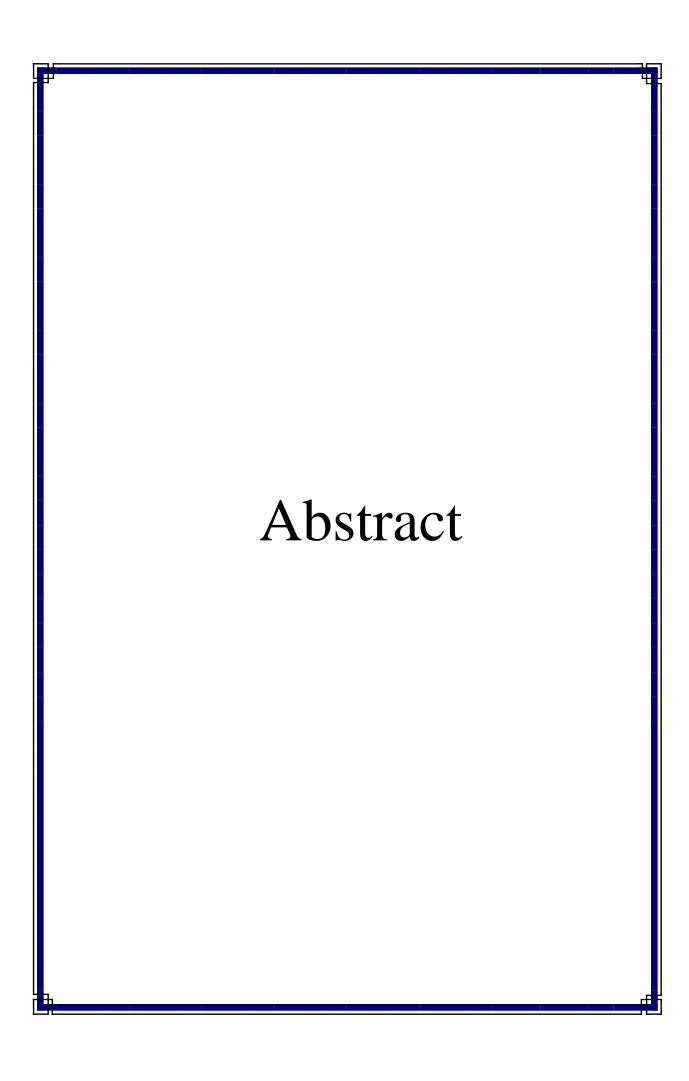
Acknowledgements

I wish to express my greatest thanks and gratitude to Professor Dr. **M.I.El-Zaiki** Professor of Nuclear Physics, Physics Department, Faculty of Science, Benha University for his scientific assistance, discussion, encouragement, kind supervision, continuous help and support throughout this work.

I would like to express my greatest thanks and gratitude to Professor Dr. **F.A.Gaber** Professor of Nuclear Engineering, NCNSRC, Atomic Energy Authority for her help, kind supervision, systematic guidance, hints, encouragement and valuable discussions.

I am deeply indebted to Prof. Dr. A. El-Sayed Abdo Professor of Nuclear Physics, NRC, Atomic Energy Authority for him suggesting the research point, kind supervision, discussing the results, comments and advice that rendered many difficulties surmountable.

I would like to express my deep gratitude and special thanks to Prof. Dr. M. A. Abdul-Wahab Professor of Nuclear Engineering, NCNSRC, Atomic Energy Authority for his guidance, kind support, supervision and valuable scientific guidance.


I would also like to express my deep thanks to Prof. Dr. **H. A. El-Boohy**, Polymer Department, NCRRT, AEA for his kind scientific advises and guidance at samples preparation.

I would like to thank Ass. Prof. W. A. Kansouh, NRC, Atomic Energy Authority for his valuable hints and help throughout radiation attenuation measurements and results analysis.

I wish to express my gratitude to Dr. M. I. Hassan, NCNSRC, Atomic Energy Authority for her guidance at the MCNP–code modeling.

I would like to thank Dr. M. A. Ali, NCRRT, Atomic Energy Authority for his valuable advises with polymeric samples preparation.

I express my gratitude to Dr. M. M. Khattab, NCRRT, Atomic Energy Authority for his scientific help at samples physical tests.

Abstract

This thesis is concerned with the investigation of the mechanical, physical and radiation attenuation properties of some shielding materials. Selected shields of polyester styrene and epoxy composites were chosen to fulfill certain applications and are concerned for the present work. Both resins (Polyester and Epoxy) were filled with crushed magnetite, ilmenite and barite fillers, as well as, boron carbide for homogeneous shields. Also, boron glass disks were coupled with the Epoxy-Ilmenite formula in one assembly to perform multilayered shields. Both basic formulas and polymeric substances, in general, are hydrocarbonic substances which guarantee good neutron moderation and attenuation. Furthermore, heavy minerals and boron additives were employed for gamma rays attenuation and thermal neutrons capture respectively.

Any material used for shielding purposes should fulfill some design criterion which includes mechanical and physical proficiency beside their main role as nuclear radiations attenuator. Therefore, mechanical properties as compressive, flexural and impact strengths were tested. Also, some physical properties as specific heat, electrical conductivity, water absorption and porosity were performed to monitor the composites usefulness as radiation shields.

Radiation attenuation properties have been carried out using different thicknesses of the investigated composite samples and collimated radiation beams emitted from radioactive Pu- α - Be (5 Ci) and spontaneous fission 252 Cf (100 μ g) neutron sources. Fast neutron and gamma ray spectra were measured by a neutron-gamma spectrometer with stilbene organic scintillator based on the

zero crossover method of the Pulse Shape Discrimination (PSD) technique. This technique was used to discriminate against undesired pulses of recoil protons or electrons due to neutrons and gamma rays respectively. The spectrometer calibration such as linearity, plateau curve, discrimination capability and energy scaling were examined before and during the measurements. Thermal neutron fluxes measurements were carried out using thermal neutron detection system with a BF₃ detector. The fluxes of different thicknesses for the concerned composites were obtained by integrating the net area under certain peaks (2.31 and 2.79 KeV).

The measured results of fast neutrons and total gamma rays are presented in the form of displayed spectra (energy distribution) for the different thicknesses of the investigated composites. The integral fast neutron and total gamma ray spectra within the total energy ranges, as well as, thermal neutron fluxes, were obtained and used to plot relative attenuation relations. These relations were used to derive the macroscopic effective removal cross-section Σ_R , total attenuation coefficient μ and macroscopic cross-section Σ of fast neutrons, gamma rays and thermal neutrons respectively. Also, relaxation lengths (λ) and half value layers (HVL) have been evaluated for the concerned composites.

MCNP-4C2 code and MERCSF-N program were used to calculate the macroscopic effective removal cross-section Σ_R of fast neutrons. The experimentally obtained results and calculated parameters were compared, where reasonable agreement was recognized.

•	α	nt.	01	115

Contents

Abstrac		i ii
Content List of 1	rs Figures, Tables and Nomenclature	iv X
	r (1): General Introduction	
1.1 1.2	Introduction General Literature Survey	1 4
	r (2): Neutrons & Gamma Rays and Shielding Principles	4
2.1	Introduction	16
2.2	Neutron and Gamma-Ray Sources	16
2.2.1	Gamma-Ray Sources	17
2.2.1.1	Reactor Gamma-Rays	17
	a- Prompt Fission Gamma-Rays	17
	b- Short-Lived Fission Product-Decay Gamma-Rays	18
	c- Long-Lived Fission Product Decay Gamma-Rays	18
2.2.1.2	Gamma-Rays from other Sources	18
	a- Radioactive Sources	19
	b- Inelastic Scattering Gamma-Rays	19
	c- Radiative Capture Gamma-Rays	19
	d- Gamma-Rays Production during the Stopping of Electrons	20
2.2.2	Neutron Sources	21
2.2.2.1	Neutrons from Nuclear Reactors	21
	a- Prompt Neutrons	21
	b- Delayed Neutrons	22
2.2.2.2	Neutron from other Sources	23
	a- Neutrons from Radioactive Sources	23
	b- Neutrons from (d, n) Reaction	24
2.3	Interaction of Radiation with Matter	25
2.3.1	Interaction of Gamma Rays with Matter	25
2.3.1.1	Photoelectric Effect	25

	Co	ontents
2.3.1.2	Compton Effect	27
2.3.1.3	Pair Production	29
2.3.2	Interaction of Neutrons with Matter	29
2.3.2.1	Classification of Neutrons According to their Energies	30
	a- Slow Neutrons	30
	b- Intermediate Neutrons	32
	c- High-Energy and Ultra High-Energy Neutrons	32
2.3.2.2	Fast Neutrons Scattering	32
	a- Elastic Scattering	32
	b- Inelastic Scattering	33
2.3.2.3	Thermal Neutrons Absorption	34
	a- Charged Particle due to Neutron Reaction	34
	b- Radioactive Capture Gamma rays, $X(n, \gamma) Y$	35
	c- The (n, 2n) and (n, 3n) Neutron Reaction	35
	d- Fission Reaction	36
2.4	Aspects of Shielding Process	37
2.4.1	Neutrons and Gamma Rays Attenuation Process	38
2.4.1.1	Slowing Down of Fast Neutrons	38
2.4.1.2	Slow Neutron Capture	38
2.4.1.3	Attenuation of Gamma Radiation	39
2.4.2	Shielding Design	39
2.4.3	Selection of Shielding Materials	41
2.4.4	Shielding Materials	42
2.4.4.1	Shielding Materials for Mobile Radiation Sources	43
2.4.4.2	Shielding Materials for Research and Stationary Radiation Source	ces 45
Chapte	r (3): Polymeric materials, Composites and their Properties	
3.1	Introduction	49
3.2	Polymeric Materials	49
3.2.1	Classification of Polymers	49
3.2.2	Shape of Polymeric Chains	50

	Content	ts
3.2.3	Thermoplastics and Thermosets	51
3.2.4	Physico-Mechanical Properties of Polymers	52
3.3	Polyester Resin	52
3.3.1	Copolymerization of Unsaturated Polyester (UP) with Monomers	53
3.3.2	Chemical Curing System	54
3.3.3	Uses of Polyester	55
3.4	Epoxy Resin	55
3.4.1	Curing Agents for Epoxy Resins	56
3.4.2	Epoxy Resin Curing Process	56
3.4.3	Applications of Epoxy Resin	58
3.5	Polymeric Composites	60
3.5.1	Fillers	60
3.5.2	Polymer-Filler Bonding Principles	61
3.5.3	Incorporation of Fillers into Polymeric Matrix	63
3.5.4	Toughening Mechanism	63
3.6	Mechanical and Physical Properties of Polymers	64
3.6.1	Mechanical Properties	64
3.6.1.1	Stress-Strain Test	65
3.6.1.2	Impact Test	65
3.6.2	Physical Properties	65
3.6.2.1	Thermal Properties (Specific Heat)	66
3.6.2.2	Electrical Properties (Alternating current "A.C." Conductivity)	66
3.6.2.3	Water Absorption and Porosity	67
Chanta	r (4): Detection of Neutrons and Gamma Rays	
Спари	(4). Detection of Neutrons and Gamma Rays	
4.1	Introduction	68
4.2	Detection of Neutrons	68
4.2.1	Boron Tri-fluoride Counter (BF ₃)	70
4.2.2	Helium-3 Detectors	71
4.2.3	Solid State Nuclear Track Detectors (SSNTD)	71
4.2.4	Activation Detectors	72

		Contents	
4.2.5	Fission Chamber		73
4.3	Detection of Gamma Rays		73
4.3.1	Gas-Filled Detectors		74
4.3.1.1	Ionization Chamber		74
4.3.1.2	Proportional Counter		75
4.3.1.3	Geiger-Müller Counter (G.M)		77
4.3.2	Inorganic Crystal Scintillators		78
4.3.2.1	Sodium Iodide NaI (Tl)		78
4.3.2.2	Cesium Iodide		79
4.3.2.3	Bismuth Germanate (BGO)		80
4.4	Techniques for Detection of Neutrons and Gamma Rays		80
4.4.1	Solid-State Detectors (TLD)		80
4.4.1.1	TLD-600 & TLD-700		81
4.4.2	Organic Crystal Scintillators		82
Chapte	r (5): Experimental Setup, Measurements and Calculations		
5.1	Introduction		83
5.2	Samples Preparation		83
5.2.1	Molds		83
5.2.1.1	Teflon Planchettes		84
5.2.1.2	Specimen Molds for Mechanical Tests		84
5.2.1.3	Specimens Molds for Radiation Attenuation Measurements		84
5.2.2	Polymeric Composites Preparation		84
5.2.2.1	Materials		85
5.2.2.2	Samples Pouring Process		89
5.2.2.3	Composites Mix Design		89
5.2.3	Samples Processing		91
5.3	Mechanical Properties		91
5.3.1	Compressive Strength Test		91
5.3.2	Flexural Strength Test		92
5.3.3	Charpy Impact Strength Test		92