LAPAROSCOPIC SPLENECTOMY

Essay

Submitted by

Ayman Abdullatif Said Abdullatif

M.B.B.Ch

For partial fulfillment of Master Degree in General Surgery

Supervised By

Prof. Dr. Ashraf Farouk Abadeer

Prof. of General Surgery DepartmentAin Shams Faculty Of medicine

Dr. Mohammed Aly Lasheen

Lecturer of General Surgery Ain Shams Faculty Of medicine 2013

بِينْهُ إِلَّهُ إِلَّا اللَّهُ إِلَّهُ إِلَّهُ اللَّهُ اللَّا اللَّهُ اللَّهُ اللَّا اللَّا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ ال

سورة طه : الآية ١١٤

To ...

My Father.. My Mother.. My Wife.. My Son..

Acknowledgment

First and foremost, praise to ALLAH for his help, generosity and giving me the power and confidence to finish this work.

I'm very grateful to Prof. Dr Ashraf Farouk Abadeer, the professor of general surgery, Ain Shams University, for his guidance and being co-operative and helpful.

I also like to express my deep appreciation and sincere gratitude for Dr Mohammad Ali Lasheen for his keen supervision, kind support and valuable guidance.

List of Contents

Title	Page
Introduction	10
Review of the literature	
	13
Chapter 1	14
	25
 Anatomy & embryology of the spleen 	
 Histology and function of the spleen 	29
Chapter 2	29
	33
- Splenomegaly	39
-Hypersplenism	
 Indications for splenectomy 	41
-Contraindications for splenectomy	43
	46
 Chapter 3; Laparoscopic splenectomy 	
- Preoperative considerations	48
- Establishment of pneumoperitoneum	59
- Identification of accessory spleens	65
- Operative procedure	68
- Anterior approach	70
- Lateral (posterolateral) approach	73
- Anterior Vs Posterolateral	
- Post-operative care	76
- Hand-assisted	81
- Single port access	81
	82
Chapter 4	
- Complications of laparoscopic splenectomy	
- Choice of the approach and technique	
- Conversion to laparotomy	
- New advances (Robot-assisted)	0.1
Summary	84
References (alphabetically arranged)	86
Arabic summary	

List of abbreviations

AAL	Anterior axillary line
AML	Acute Myeloid leukemia
AcS	Accessory spleen(s)
CLL	Chronic Lymphocytic Leukemia
CML	Chronic Myelogenous Leukemia
CT	Computed Tomography
DVT	Deep Vein Thrombosis
DTI	Direct trocar insertion
GIA	Gastrointestinal anastomosis
HALS	Hand-assisted laparoscopic splenectomy
ITP	Idiopathic/Immune Thrombocytopenic purpura
IVIG	Intravenous Immunoglobulins
LICS	Left lower inter-costal space
LMWH	Low-molecular-weight heparin
LS	Laparoscopic splenectomy
MCL	Mid-clavicular line
MPD	Myeloproliferative Disorders
MRI	Magnetic resonance imaging
OPSS	Overwhelming post splenectomy sepsis
PPV	Polyvalent Pneumococcal vaccine
PVT	Portal Vein Thrombosis
RBCs	Red blood cells
SPA	Single port access
SAE	Splenic artery embolization
SUF	Sub-umbilical fold
TTP	Thrombotic thrombocytopenic purpura
VNI	Veress needle insertion

List of tables

Table no.	Title	Page
1	Indications for elective splenectomy	38
2	Comparison of skin fold thickness at various points	43
3	Injuries associated with different entry techniques and	45
	their respective incidence	
4	Baseline characteristics of patients undergoing elective	65
	laparoscopic splenectomy.	
5	Surgical outcomes of patients undergoing elective	66
	laparoscopic splenectomy	
6	Complications of laparoscopic surgery in general	76
7	Risk of postsplenectomy sepsis with indication for	79
	splenectomy.	

List of figures

Figure no.	Title	Page
1	Development of the spleen	18
2	Location of the spleen	18
3	Spleen anatomy and related organs	19
4	Surface anatomy of the spleen	19
5	CT diagram showing the anatomical site of the spleen	20
6	Peritoneal attachments of the spleen	20
7	Splenic ligaments	21
8	Suspensory ligaments of the spleen	21
9	Arterial supply of the spleen. The most common consists of	22
	two extra-parenchymal divisions	
10	General arterial distribution of the spleen	22
11	CT angiography showing aneurysm arising from the main	23
	splenic artery	
12	The spleno-omental "criminal" fold of Morgenstern	24
13	Histology of the spleen	26
14	Splenic compartments and splenic circulation	27
15	Outside view showing Veress needle insertion through	44
	LICS just lateral to midclavicular line	
16	Veress needle lying safely in peritoneal cavity after insertion	44
	through LICS	
17	Sites where accessory spleens may be found	46
18	Position of the surgeon, assistant(s) during LP	47
	anterior approach	
19	Port position in LS anterior approach	48
20	Opening of the greater omentum as the 1st step in	48
	the anterior approach	
21	Continued dissection of the gastrosplenic ligament	50
	with opening of the lesser sac	
22	Division of the splenocolic ligament	50
23	After opening of the retrogastric pouch, the splenic	51
	artery can be located easily at the upper border of	
	the pancreas	
24	Skeletonization of the splenic artery	51
25	Ligation of the splenic artery	52
26	Clipping of the splenic artery with Hem-O-Lok clips	52
27	Stabling of the splenic hilum with endo-GIA stabler	53
28	Schematic illustrations of splenic pedicels.	54
29	Division of the posterior and lateral attachments of	55
	the spleen	
30	Insertion of the spleen into the retrieval bag	55

31	Extraction of the retrieval bag	56
32	Morcellation of the spleen	56
33	Extraction of the whole spleen through a lower	57
	abdominal transverse incision	
34	.Patient positioning for the lateral approach	58
35	Port positioning for the lateral approach	59
36	Dissection of the splenocolic ligament	60
37	Gastrosplenic ligament shown and Lienorenal	60
	ligament being divided	
38	Appearance of the trocars during laparoscopic	61
	splenectomy lateral approach	
39	Dissection of the hilar vessels	62
40	Anterior and posterior approaches	63
41	Diagram illustrating HALS	69
42	Port and hand placement for a hand-assisted	70
	laparoscopic splenectomy for an enlarged spleen	
43	Hand-assisted laparoscopic splenectomy. The	70
	enlarged spleen may be removed in total from the	
	hand-assist incision	
44	a. External photo of SPA set up, b. Schematic of SPA	72
45	Placement of SILS port with three 5-mm low-profile	73
	trocars	
46	Splenosis post laparoscopic splenectomy	80
47	Trocar position. Black dots: robotic trocars. White	82
	dots: assistant's trocars	

Introduction

Introduction

For many years it was thought that the spleen was an unnecessary organ, like the appendix. Galen wrote it was "an organ full of mystery." Therefore, the spleen was removed whenever it was injured. In the Middle Ages it was removed as a way to rid the body of evil humors.

The spleen serves a valuable role in immune function because it purifies the blood and helps the immune system with recognize and attack foreign antibodies and disease.

It is also known to function as a site for the development of new red blood cells from their hematopoietic stem cell precursors, and particularly in situations in which the bone marrow, the normal site for this process, has been compromised by a disorder such as leukemia.

The first splenectomy was performed by Andirano Zaccarello in 1549 on a young woman with an enlarged spleen who survived for 6 years after surgery. (Uranues S. et al., 2005)

Traditionally, surgical removal of the spleen was done by an open approach using either an upper midline or left subcostal incision. With the advent of minimally invasive techniques, laparoscopic splenectomy has become a standard procedure for elective removal of the spleen for most indications since the first report of laparoscopic splenectomy by Delaitre and Maignien in 1991. (Delaitre B. et al., 1991)

Because of the bulk and vascularity of the spleen, laparoscopic splenectomy is one of the most challenging laparoscopic procedures.

Many comparative clinical studies have documented the effectiveness and safety of laparoscopic splenectomy versus laparotomy. Laparoscopic splenectomy is believed to be superior to open splenectomy due to its minimal invasiveness, which manifests as minimal intraoperative bleeding, less pain, expedited postoperative recovery, shorter hospital stay, and lower complication rate. (Kucuk C. et al., 2005)

Most patients currently scheduled for splenectomy undergo laparoscopic splenectomy via the anterior approach. This approach

provides laparoscopic surgeons with a direct view of the spleen anatomy, similar to that in conventional open splenectomy. (Choi SH. et al., 2011)

Alternatively, laparoscopic splenectomy can be performed using a lateral approach, in which patients are usually placed in the right lateral decubitus position for better exposure of the spleen. (Kuriansky J. et al., 1998)

Contraindications to laparoscopic splenectomy are similar to contraindications for all laparoscopic surgeries. They include the inability to tolerate general anesthesia, uncontrollable coagulopathy, and the need for laparotomy for associated procedures.

Although reports on the safety of laparoscopic splenectomy in patients with cirrhosis and portal hypertension have been published (Wang Y. et al., 2010), many consider this an absolute contraindication to laparoscopic splenectomy. (Habermalz B. et al., 2008)

Chapter 1

"Review" Embryology, Anatomy, Histology and Function of the Spleen

Anatomy of the Spleen

The spleen is an organ shaped like a shoe that lies relative to the 9th and 11th ribs and is located in the left hypochondrium and partly in the epigastrium. Thus, the spleen is situated between the fundus of the stomach and the diaphragm. The spleen is very vascular and reddish purple in color; its size and weight vary. A healthy spleen is not palpable.

Development

The spleen develops in the cephalic part of dorsal mesogastrium (from its left layer; during the sixth week of intrauterine life) into a number of nodules that fuse and form a lobulated spleen. Notching of the superior border of the adult spleen is evidence of its multiple origin (Lippincott Williams & Wilkins; 2009)

Gross Anatomy

The spleen's 2 ends are the anterior and posterior end. The anterior end of the spleen is expanded and is more like a border; it is directed forward and downward to reach the mid-axillary line. The posterior end is rounded and is directed upward and backward; it rests on the upper pole of the left kidney.

The spleen's 3 borders are the superior, inferior, and intermediate. The superior border of the spleen is notched by the anterior end. The inferior border is rounded. The intermediate border directs toward the right.

The 2 surfaces of the spleen are the diaphragmatic and visceral. The diaphragmatic surface is smooth and convex, and the visceral surface is irregular and concave and has impressions. The gastric impression is for the fundus of the stomach, which is the largest and most concave impression on the spleen. The renal impression is for the left kidney and lies between the inferior and intermediate borders. The colic impression is for the splenic flexure of the colon; its lower part is related to the phrenicocolic ligament. The pancreatic impression for the tail of the pancreas lies between the hilum and colic impression. (Lippincott, Williams & Wilkins; 2007)

Hilum

The hilum can be found on the inferomedial part of the gastric impression. The hilum transmits the splenic vessels and nerves and provides attachment to the gastrosplenic and splenorenal (lienorenal) ligaments.

Peritoneal relations

The spleen is surrounded by peritoneum and is suspended by multiple ligaments, as follows:

<u>The gastrosplenic ligament</u> extends from the hilum of the spleen to the greater curvature of the stomach; it contains short gastric vessels and associated lymphatics and sympathetic nerves.

<u>The splenorenal ligament</u> extends from the hilum of the spleen to the anterior surface of the left kidney; it contains the tail of the pancreas and splenic vessels.

<u>The phrenicocolic ligament</u> is a horizontal fold of peritoneum that extends from the splenic flexure of the colon to the diaphragm along the midaxillary line; it forms the upper end of the left paracolic gutter.

Visceral relations

The visceral surface of the spleen contacts the following organs:

- Anterior surface of the left kidney
- Splenic flexure of the colon
- > The fundus of the stomach
- > Tail of the pancreas

The diaphragmatic surface is related to the diaphragm; the diaphragm separates the spleen from the pleura and the lung.

Vascular supply

- ➤ The splenic artery supplies blood to the spleen. This artery is the largest branch of the celiac trunk and reaches the spleen's hilum by passing through the splenorenal ligament. It divides into multiple branches at the hilum. It divides into straight vessels called penicillin, ellipsoids, and arterial capillaries in the spleen.
- When the splenic artery divides terminally near the spleen (~1-2 cm from the hilus) it is called a magistral splenic. This occurs in about 30% of individuals. When the division of the splenic occur earlier, as in about 70% of individuals, in the prepancreatic segment, it is called a distributing splenic.
- The variations of the splenic artery are numerous. It may divide into two branches that reunite, the splenic vein passing through the loop thus formed. It may give rise to branches normally derived from other vessels, such as the left gastric, middle colic, and left hepatic. (Garcia-Porrero et al.; 1988)
- The splenic artery supplies four to six (more or less) gastric vasa brevia arteries. These are terminal or end arteries. It can arise from the