

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

BIICK

NOVEL CMOS AND BICMOS ANALOG CIRCUITS AND SYSTEMS

A THESIS

BY

HESHAM F. A. HAMED

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL Engineering, FACULTY OF ENGINEERING, EL-MINIA UNIVERSIY

FOR THE DEGREE DOCTOR OF PHILOSOPHY

SUPERVISED BY

PROF. Dr. ALY E. SALAMA Electronics and Communications Dept. Cairo University

Assoc. Prof. Dr. SHERIF EMBABI Electrical Eng. Dept. Texas A&M University Assoc. Prof. Dr. AHMED EL-GAAFARY
Electrical Eng. Dept.
El-Minia University

Dr. AHMED HUSSIEN
Electronics and Communications Dept.
Cairo University

ABSTRACT

Barbara Barbara

The switched-current (SI) technique is a quite immature current-mode sampled-data processing technique. Further research and development has still to be done to make it competitive with today existing commercial techniques.

One of the objectives of this research is to investigate novel structures that are advantageous compared to existing structures in terms of performance and signal processing accuracy.

Proposed techniques to improve the switched-current (SI) memory cell performance are presented. The first technique is mainly aimed to eliminate the charge injection in S2I memory cell that due to biasing current. The second technique is aimed to reduce the error due to non-zero output-input conductance ratio in the S2I memory cell.

In this thesis the advantages of using BICMOS current memory cell are presented. As application of BICMOS current memory cell, a design procedure of a third order low pass elliptic filter is presented.

The techniques of programming Q and center frequency w_0 independently based on second generation switched-current technique are presented. The most important advantage of these techniques is that they do not use programming switches in the signal path.

A new approach to develop Field Programmable Analog Arrays (FPAAs) which is based on switched-current technique is presented. The Configurable Analog Cell (CAC) is based on switched-current integrator. This (CAC) is easily configured to perform basic functions such as amplifications, attenuation, inversion, summation and integration. These elementary operations may then be combined to obtain more complex signal processing, such as filtering and data conversion. The proposed FPAA architecture has many

advantages such as it does not use extra switches to achieve the conductivity between the cells. It also does not use any switches in the signal path to reconfigure the cell. The use of a standard digital CMOS process makes the FPAA an attractive choice to integrate with its digital counter part (FPGA) to create field programmable mixed signal array. As an example for FPAA a 5th order low pass ladder filter is presented.

To my parents, wife, and daughters Yasmin & Yomna, in deep gratitude for their constant encouragement

ACKOWLEDGEMENTS

60 1 2 2 2 2 2 A

First I would like to acknowledge Dr. Sherif Embabi for his superb guidance in my Ph. D. research. I greatly appreciate the fact that he welcomed me as a member of his research-team at Texas A&M University, and that he has guided me into the world of analog circuits and systems design. I would like to thank Prof. Aly E. Salama for recommending and assisting me to be member in the microelectronics group at Texas A&M University, and also for his superb guidance. I would like to thank Dr. Ahmed El-Gaafary for helping me a lot during my research. I appreciate the support from Dr. Ahmed Hussien.

I wish to express appreciation for microelectronics group at Texas A&M University, especially Prof. Edgar Sanchez-Sinencio, Dr. J. Pineda and Prof. M. Schneider for their always open doors to me. Also the Ph. D. students, M. Grimaila, X. Quan, G. Han, M. Ibrahim and A. Reyes for their helping me during this research.

I would like to thank Dr. John B. Hughes at Philips Research Laboratories in Redhill, England, Prof. Antonio C. M. de Queiroz at the Federal University of Riode Janerio, Brazil

Dr. B. Jonsson & Dr. H. Traff at Linkoping University, Sweden, and Prof. T. Inoue at Kumamoto University, Japan, for many very useful discussions I have had with all of them about Switched-current technique.

I would like to thank my wife and my daughters for patiently enduring 30 month of my long hours and lost weekends at the office.

Without helping from ALLAH, loving parents, my sisters and close friends I would not have had the strength to carry on.

TABLE OF CONTENTS

C H A	APTER	age	
	INTRODUCTION	1	
1	IIII ROBOCTION	2	
	1-2 Organization of the thesis	3	
		4	
2 .	Switched-Current Building Blocks	4	
	2-1 Introduction	4	
	2-2 Switched-current building blocks	5	
	2-2-1 First generation SI memory cell	5	
	2-2-2 Second generation SI memory cell	7	
	2- 2-3 Delay cell		7
	2- 2-4 Integrator modules		7
	2-2-4-1 Non-inverting integrator		7
	2-2-4-2 Non-inverting damped integrator		11
•	2-2-4-3 Inverting damped integrator		13
	2-2-4-4 Bilinear Z-transform Integrator		13
	2-2-4-5 Double sampling bilinear integrator		16
			18
	Z-Z-J Dilloron		18
	2-2-5-1 Generalised inverting differentiator	,,,,,	18
	2-2-5-2 Generalised non-inverting differentiator	••	18
	2-2-5-3 Bilinear Z-transform differentiator		22
	2-3 Switched-current limitations		
	2-3-1 Mismatch error		22
	2-3-2 Output-input conductance ratio error		. 24
	2-3-3 Settling error		25

CHA	APTER	Page
	2-3-4 Charge injection errors	26
	2-3-5 Noise errors	26
3	Techniques For Improving Switched-Current	
	Circuits	29
	3-1 Introduction	29
	3-2 Feedback Techniques	29
	3-2-1 Op Amp active memory cell	29
	3-2-2 Grounded-gate active memory cell	31
	3-2-3 High negative feedback memory cell	. 31
	3-2-4 Simple cascode memory cell	. 33
	3- 2-5 Folded Cascode memory cell	33
	3-2-6 Regulated cascode	35
	3-2-7 Regulated folded-cascode memory cell	35
	3-3 Fully differential switched-current circuits	35
	3-3-1 Simple fully differential current memory cell	37
	3-4 Mulitstep Techniques	
	3-4-1 S2I a two-step switched-current	37
	3-4-2 N-step charge injection cancellation for accurate switched	-
	current circuit	. 40
	3- 4-3 Double memory cell	40
	3- 4-4 Charge injection cancellation using Miller capacitance	
	technique	. 40
4	Improved Switched-Current Memory Cells	45
	4-1 Introduction	45
	4-2 Cancellation of the error due to independent signal	46
	4-3 Reduction of the output-input conductance ratio error	50
	4-4 BICMOS SI memory cells	52

CHAPTER		Page	
	4-4-1 Simple cascode BICMOS SI memory cell	53	
	4- 4-2 Grounded-gate active BICMOS memory cell	58	
5	BICMOS Switched-Current Bilinear		
	Low Pass Elliptic Filter	62	
	5-1 Introduction	62	
	5-2 BICMOS double sampling bilinear integrator	62	
	5-3 BICMOS 3 rd order SI low pass filter	64	
	5-4 Simulation results	68	
	5-4-1 Ideal simulation	. 68	
	5-4-2 Non-ideal simulation	68	
6	Digitally Programmable Switched-Current Filters	75	
·	6-1 Introduction	75	
	6-2 Programmable filter design	76	
	6-3 The implementation of the programmable filter using SI technique	; 7 9	
	6-3-1 The current memory cell design	79	
	6-3-2 Common-mode feedforward	81	
	6-3-3 The integrator design	83	
•	6-3-4 The whole filter	83	
	6-4 Simulation results	85	
7	Field-Programmable Analog Array Architecture	. 91	
	7-1 Introduction	. 91	
	7-2 Evolution of programmable devices	91	
	.7-3 Selection of the programming elements	95	

CHAPTER		Page
	7-3-1 SRAM programming technology	
	7-3-2 Antifuse programming technology	. 95
	7-3-3 Floating gate programming technology	. 97
	7-4 Considerations on the design of FPAA architecture	99
	7-4-1 Effect of granularity on performance and flexibility	100
	7-4-2 Flexibility of CAC	. 100
	7- 4-3 Selection of suitable approach	101
	7-5 Overview of the proposed configuration scheme	101
8	Implementation of the Configurable Analog	
	Cell Using SI Techniques	. 104
	8-1 Introduction	104
	8-2 The structure of configurable analog cell (CAC)	105
	8-3 Programming logic and control circuits	107
	8-4 Example of an FPAA based filter implementation	116
٠	8-4-1 Design specifications	116
	8- 4-2 Design procedure	116
	8-4-3 Simulation results	119
	8-5 A comparison between deferent FPAAs techniques	121
9	CONCLUSIONS	122
	REFERENCES	. 124

LIST OF FIGURES

FIGURE		Page
2-1	First generation current memory cell.	6
2-2	Second generation current memory cell.	
2-3	Delay cell.	
2-4	Non-inverting integrator.	
2-5	Simplified non-inverting integrator.	
2-6	Non-inverting damped integrator.	. 12
2-7	Inverting damped integrator.	. 14
2-8	Bilinear integrator.	. 15
2-9	Double sampling bilinear integrator.	17
2-10	Generalised inverting differentiator.	19
2-11	Generalised non-inverting differentiator.	20
2-12	Bilinear Z-transform differentiator.	21
2-13	Basic current memory cell.	23
2-14	Small signal equivalent circuit.	23
2-15	Basic switched-current memory cell with noise sources.	28
3-1	OP Amp active memory cell.	30
3-2	Grounded-gate active memory cell.	30